Journal of Rare Cardiovascular Diseases

RESEARCH ARTICLE

Comparative Review of Surgical vs. Endovascular Revascularization for Complex Long-Segment Peripheral Arterial Lesions: A Focus on High-Risk Presentations

Ahmed Abdulsalam khaleel

(MBChB, FICMS) subspecialist of endovascular surgery Department of Thoracic and Vascular Surgery, Ibn Al-Nafees Teaching Hospital, Ministry of Health, Baghdad, Iraq.

*Corresponding Author Dr. Ahmed Abdulsalam khaleel

Article History

Received: 11.08.2025 Revised: 27.08.2025 Accepted: 08.09.2025 Published: 10.10.2025 Abstract: Managing long lesions, especially in peripheral arterial disease, represent a significant clinical challenge in the term of revascularization strategies. Surgical bypass and endovascular therapy (EVT) remain the most important revascularization modalities. With its minimal invasive nature, EVT provides shorter recovery time and lesser perioperative risk, yet it exhibits higher rates of re-stenosis and re-intervention, particularly in lesions longer than 15 cm. Conversely, as surgical bypass is considered being more invasive, it provides superior long-term patency and durability in complex arterial disease. The new advancements like intravascular imaging, drug-coated devices and hybrid procedures are reducing the gap between the two techniques. This review analysis patient-specific factors, safety, efficacy, outcomes and of both surgical and endovascular revascularization and highlighting the ongoing advancement that support a precision medicine approach for managing long arterial lesions.

Keywords: Endovascular revascularization; Peripheral arterial disease; Surgery.

INTRODUCTION

Worldwide, Peripheral arterial disease (PAD) is a major public health issue due to its high risk of death and morbidity, which is linked to cardiovascular disease and adverse limb events [1], particularly impacting elderly and diabetic populations. PAD frequently requires reinterventions after lower extremity revascularization to maintain perfusion [2,3]. Individual evaluation of comorbidities, clinical presentation, and vascular anatomy is necessary for the medical management of individuals with PAD [4]. Long-segment lesions, often located in the femoropopliteal or infrapopliteal regions and often involve chronic total occlusions and multilevel stenoses, have traditionally been managed with surgical bypass. With the evolution of Endovascular therapy, treatment paradigms are shifting [5-7].

Endovascular therapy (EVT)

EVT encompasses a broad range of minimally invasive techniques aimed at restoring blood flow in occluded or stenotic peripheral arteries. These approaches include bare-metal stents (BMS), covered stents, sirolimuscoated stents, drug-coated balloons (DCBs), atherectomy devices, and bioresorbable scaffolds offers less invasive treatment, quicker recovery, and has shown increasing durability in the prospective outcomes for patients with PAD [8-12]. Balloon angioplasty remains a fundamental part of EVT. It can involve plain balloon angioplasty (POBA) or drug-coated balloons (DCBs). DCBs deliver anti-proliferative agents (e.g. paclitaxel) directly to the arterial wall to prevent neointimal hyperplasia and decrease the re-stenosis. Several randomized controlled trials (RCTs) have demonstrated that DCBs like Viabahn Endoprosthesis

offer superior primary patency rates compared to POBA, particularly in short to intermediate-length lesions [8,9,14]. Additionally, bio resorbable scaffolds and sirolimus coated devices are under consideration with long lesions. Although the results are encouraging, endovascular treatment in long lesions is affected by higher incidence of restenosis (due to thrombosis and neointimal hyperplasia), stent fracture and target lesion revascularization (14-16).

Surgical Bypass

Open revascularization using autologous saphenous vein remains the gold standard for complex and long lesions, mostly in patients with good surgical profiles or life expectancy beyond two years [17,18]. The increased risk of wound infection, multi-month hospital stay, likelihood of graft occlusion, and necessitation of general anesthesia [19,20]. Vein graft restenosis occurs in nearly 30-40% of patients within the first two years post-surgery, necessitating ongoing graft surveillance and potential reintervention [17,21]. This was revealed in the BASIL Trial which underscored the importance of individualized treatment planning, balancing patient comorbidities, life expectancy, and anatomical suitability [17].

Surgical bypass vs. endovascular therapy

According to the Best Endovascular versus Best Surgical Therapy in Patients with Chronic Limb-Threatening Ischemia (BEST-CLI) trial; the initial surgical bypass was linked to a significantly lower major adverse limb event (MALE) rate than EVT among CLTI patients with a suitable single segment of the great saphenous vein (Cohort 1) who were eligible for both revascularization strategies [22]. These findings highlighted the value of a conduit- and patient-

specific approach and emphasized the need for individualized decision-making in managing advanced peripheral arterial disease [23,24]. Meta-analyses and randomized controlled trials showed that limb salvage and mortality outcomes were often comparable between the two approaches. Nevertheless, EVT was associated with a higher rate of re-intervention. For complex lesions, TASC II C and D, the bypass provided superior

long-term primary patency, while EVT offered the benefits of lower perioperative morbidity and faster recovery especially in high-risk patients [25,26]. Despite the lower initial morbidity and mortality of EVTs, they did not consistently reduce the rate of major amputations compared to bypass, particularly for the patients with suitable surgical anatomy [27].

RESULTS AND OBSERVATIONS:

Table 1: comparison between Endovascular Therapy (EVT) and Surgical Bypass

Parameter	Endovascular Therapy (EVT)	Surgical Bypass	Supporting Studies
Invasiveness	Minimally invasive; percutaneous	Highly invasive; requires open surgery	Bradbury et al., 2005; Farber et al., 2022
Durability / Patency	Lower primary patency in long lesions (>20 cm)	Higher long-term patency, especially with GSV graft	Farber et al., 2022; Bradbury et al., 2005
Suitability for High- Risk Patients	Preferred for elderly or comorbid patients	Higher perioperative risk, limited to fit patients	Members et al, 2016; Bates et al,2024
Restenosis / Reintervention Rate	Higher rate of restenosis, especially in long chronic total occlusion	Lower reintervention rates in good conduit patients	Scheinert et al., 2005; Brodmann et al., 2020
Procedure Flexibility	Repeatable and adaptable with evolving tech	Limited by conduit availability and surgical history	Rocha-Singh et al., 2012
Recovery Time	Shorter recovery, outpatient possible	Longer hospital stay and rehabilitation	Tepe et al., 2008; Rosenfield et al., 2015;
Cost and Resources	Typically lower initial cost, fewer ICU needs	Higher upfront cost, longer OR and hospital usage	Tang et al, 2018; Childers et al, 2019
Technological Innovation	Rapidly advancing (e.g., DCBs, sirolimus, lithotripsy, AI)	Innovations mainly in perioperative care and technique	Cassano et al, 2023; Yao et al, 2025
Hybrid Compatibility	Easily combined with open procedures in hybrid approach	Often the anchor for hybrid revascularization	Rossos et al, 2024; Yao et al, 2025
Patient profile	TASC II C/D, high surgical risk, no vein conduit	Good GSV conduit, long life expectancy, low surgical risk	Kluckner et al, 2023; Mumtaz et al, 2025

Complications

EVT complications include: stent fracture or occlusion, distal embolization, access site issues involving **hematomas**, **pseudoaneurysms**, **arteriovenous fistulas**, and **retroperitoneal hemorrhage**; arterial dissection and perforation, restenosis and reintervention, contrast-induced nephropathy ,radiation exposure, MALE and mortality [28-35]. While surgical complications range from wound complications, infections , graft thrombosis and occlusion, bleeding and hematoma, lymphatic complications, ischemia-reperfusion injury, graft infection to cardiopulmonary events and mortality [30, 36-41]. However, patient selection and procedural planning are critical [42,43].

Hybrid Revascularization Approaches in Multilevel Peripheral Arterial Disease

Hybrid approaches that integrate **endovascular therapy (EVT) with open surgical procedures** are increasingly employed in the treatment of **multilevel PAD**. These techniques offer **patient-specific solutions**, particularly when implemented in centers with **multidisciplinary expertise**, where procedural planning and execution can be optimized [44,45]. A review of the literature supports the use of **hybrid revascularization** as a **less invasive**, **durable**, **and reliable therapeutic strategy**, especially for **high-risk patients** with advanced arterial disease. By combining the advantages of both revascularization modalities, hybrid procedures should be regarded as an essential component of the **contemporary**

vascular surgeon's armamentarium [46]. These techniques are particularly effective in the context of multilevel arterial involvement, where revascularization of a single level may be insufficient for achieving wound healing or limb salvage. Performing both interventions in a single session is considered technically feasible and cost-efficient, offering comprehensive revascularization tailored to complex clinical presentations [47].

Advances in Revascularization Techniques

Revascularization is undergoing significant transformation. Driven by advances in technology, patient-specific approaches, and a technological innovations like vessel preparation tools (e.g., lithotripsy), sirolimus-based devices, biodegradable stents, and AI-based planning tools are shaping the future of EVT. Advanced imaging techniques (IVUS and OCT) support procedural accuracy, shifting toward minimally invasive care. One major development is the adoption of sirolimus-based endovascular devices, which are replacing paclitaxel-coated balloons and stents due to sirolimus's antiproliferative effects without the associated late mortality risks [48,50]. Intravascular Ultrasound (IVUS) is becoming central in procedural planning, allowing for precise vessel sizing, plaque characterization, and a reduced risk of dissection [51,52]. Adjunctive lesion preparation tools such as orbital and laser atherectomy, as well as scoring balloons, are improving outcomes by minimizing residual stenosis and enhancing drug uptake [53,54]. Despite these advances, surgical bypass remains the gold standard in select younger, low-risk patients with suitable great saphenous vein (GSV), offering superior long-term patency and limb salvage—as reaffirmed by the BEST-CLI trial [55,56]. Hybrid strategies combining open surgical inflow with distal endovascular repair are showing promise, particularly for multilevel or heavily calcified peripheral artery disease (PAD), and may benefit from precision medicine tools like WIfI, GLASS, and AI-based planning [57,58]. Additionally, robotic and AI-assisted interventions are emerging, providing enhancements in imaging analysis, predictive modeling, robotic navigation, potentially improving procedural precision and reducing operator variability [59]. Device innovation continues with the development of drug-eluting technologies, bioresorbable scaffolds, and covered stents such as Viabahn, improving patency even in complex lesions [60]. However, equitable global access remains a critical consideration, as open surgery may still be the only viable option in low-resource settings due to cost constraints and limited endovascular infrastructure.

CONCLUSION

The management of long lesions in peripheral arterial disease (PAD) presents complex clinical challenges, particularly when selecting between endovascular and surgical revascularization. Both strategies have evolved significantly in the previous years, While endovascular therapy is rapidly gaining ground in long lesion treatment due to innovation and patient-centered benefits, open surgery remains vital—particularly for long tibial lesions and in low-resource settings where endovascular infrastructure may be limited.

Looking forward, the future likely lies in hybrid care, data-driven personalization, and global equity in PAD management. Continued research should prioritize patient-reported metrics, long-term clinical outcomes and cost-effectiveness, while integrating innovations such as drug-eluting devices, bioresorbable scaffolds, and AI-assisted planning tools. Ultimately, optimal treatment should be individualized based on anatomical complexity, patient risk profile, conduit availability, and institutional expertise. Strategic patient selection remains the cornerstone of achieving successful outcomes.

REFERENCES

1. Goffart S, Delingette H, Chierici A, et al. Artificial Intelligence Techniques for Prognostic and Diagnostic Assessments in Peripheral Artery Disease: A Scoping Review. Angiology. 2025;0(0). doi:10.1177/00033197241310572

- Pokharel Y, Kokkinidis DG, Wang J, Gosch KL, Safley DM, Spertus JA, Mena-Hurtado C, Smolderen KG. Predictors of Revascularization in Lower-Extremity Peripheral Artery Disease: Insights From the PORTRAIT Study. J Endovasc Ther. 2025 Apr;32(2):423-430. doi: 10.1177/15266028231179574. Epub 2023 Jun 13. PMID: 37309164.
- 3. Huttler JJ, Satam KK, Kim TI, Zhuo H, Zhang Y, Aboian E, Guzman RJ, Chaar CIO. Perioperative complications of minor and major reinterventions for peripheral arterial disease. Vascular. 2025 Apr;33(2):446-455. doi: 10.1177/17085381241246907. Epub 2024 Apr 10. PMID: 38597200.
- 4. Lucia Mazzolai, Gisela Teixido-Tura, Stefano Lanzi, Vinko Boc, Eduardo Bossone, Marianne Brodmann, Alessandra Bura-Rivière, Julie De Backer, Sebastien Deglise, Alessandro Della Corte, Christian Heiss, Marta Kałużna-Oleksy, Donata Kurpas, Carmel M McEniery, Tristan Mirault, Agnes A Pasquet, Alex Pitcher, Hannah A I Schaubroeck, Oliver Schlager, Per Anton Sirnes, Muriel G Sprynger, Eugenio Stabile, Françoise Steinbach, Matthias Thielmann, Roland R J van Kimmenade, Maarit Venermo, Jose F Rodriguez-Palomares, ESC Scientific Document Group, 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases: Developed by the task force on the management of peripheral arterial and aortic diseases of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS),

- the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), and the European Society of Vascular Medicine (ESVM), European Heart Journal, Volume 45, Issue 36, 21 September 2024, Pages 3538–3700, https://doi.org/10.1093/eurheartj/ehae179
- Barriocanal, A. M., López, A., Monreal, M., & Montané, E. (2016). Quality assessment of peripheral artery disease clinical guidelines. Journal of vascular surgery, 63(4), 1091-1098.
- Thomas, J. W. (2017). Assessment and management of peripheral arterial disease. Practice Nursing, 28(11), 465-470.
- Maheswaran, R., Tong, T., Michaels, J., Brindley, P., Walters, S., & Nawaz, S. (2024). Impact of a national guideline for the management of peripheral arterial disease on revascularization rates in England: interrupted time series analysis. BJS open, 8(5), zrae115.
- Tepe, G., Laird, J., Schneider, P., Brodmann, M., Krishnan, P., Micari, A., ... & Jaff, M. R. (2015). Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN. PACT SFA randomized trial. Circulation, 131(5), 495-502.
- Katsanos, K., Spiliopoulos, S., Kitrou, P., Krokidis, M., & Karnabatidis, D. (2018). Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association, 7(24), e011245.
- 10. McKinsey, J. F., Zeller, T., Rocha-Singh, K. J., Jaff, M. R., Garcia, L. A., & Definitive Le Investigators. (2014). Lower extremity revascularization using directional atherectomy: 12-month prospective results of the DEFINITIVE LE study. JACC: Cardiovascular Interventions, 7(8), 923-933.
- Scheinert, D., Schmidt, A., Zeller, T., Müller-Hülsbeck, S., Sixt, S., Schröder, H., ... & Rosenfield, K. (2016). German center subanalysis of the LEVANT 2 global randomized study of the Lutonix drug-coated balloon in the treatment of femoropopliteal occlusive disease. Journal of Endovascular Therapy, 23(3), 409-416.
- Secemsky, E. A., Kundi, H., Weinberg, I., Jaff, M. R., Krawisz, A., Parikh, S. A., ... & Yeh, R. W. (2019). Association of survival with femoropopliteal artery revascularization with drug-coated devices. JAMA cardiology, 4(4), 332-340.
- Beckman, J. A., Schneider, P. A., & Conte, M. S. (2021). Advances in revascularization for peripheral artery disease: revascularization in PAD. Circulation research, 128(12), 1885-1912.
- Saxon, R. R., Chervu, A., Jones, P. A., Bajwa, T. K., Gable, D. R., Soukas, P. A., ... & Rush, M. J. (2013). Heparin-bonded, expanded polytetrafluoroethylene-lined stent graft in the

- treatment of femoropopliteal artery disease: 1-year results of the VIPER (Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease) trial. Journal of Vascular and Interventional Radiology, 24(2), 165-173.
- Wu, X., Wu, S., Kawashima, H., Hara, H., Ono, M., Gao, C., ... & Onuma, Y. (2021). Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Review of Medical Devices, 18(4), 351-366.
- Wen, Y., Li, Y., Yang, R., Chen, Y., Shen, Y., Liu, Y., ... & Li, H. (2024). Biofunctional coatings and drug-coated stents for restenosis therapy. Materials Today Bio, 101259.
- 17. Bradbury, A. W., Ruckley, C. V., Fowkes, F. G. R., Forbes, J. F., Gillespie, I., & Adam, D. J. (2005). Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet, 366(9501), 1925-1934.
- Korosoglou, G., Torsello, G., Saratzis, A., Isernia, G., Kontopodis, N., González, T. M., ... & Caradu, C. (2024). Editor's Choice–Endovascular Versus Surgical Treatment for All Comer Patients With Prosthetic Bypass Graft Occlusion: The Multicentre ENSUPRO Study. European Journal of Vascular and Endovascular Surgery, 67(5), 786-796.
- 19. Taber, A. L., & Green, N. E. (2007). A manual of orthopaedic terminology (7th ed.). Elsevier.
- Aziz F, Bohr T, Lehman EB. Wound Disruption after Lower Extremity Bypass Surgery is a Predictor of Subsequent Development of Wound Infection. Ann Vasc Surg. 2017 Aug;43:176-187. doi: 10.1016/j.avsg.2016.10.065. Epub 2017 Mar 11. PMID: 28300677.
- 21. AbuRahma, A. F. (2018). When are endovascular and open bypass treatments preferred for femoropopliteal occlusive disease?. Annals of vascular diseases, 11(1), 25-40.
- 22. Motaganahalli, Raghu & Menard, Matthew & Koopman, Matt & Farber, Alik. (2020). BEST Endovascular Versus Best Surgical Therapy in Patients with Critical Limb Ischemia (BEST-CLI) Trial. Vascular and Endovascular Review. 3. 10.15420/ver.2019.12.
- Farber, A., Menard, M. T., Conte, M. S., Kaufman, J. A., Powell, R. J., Choudhry, N. K., ... & Rosenfield, K. (2022). Surgery or endovascular therapy for chronic limb-threatening ischemia. New England Journal of Medicine, 387(25), 2305-2316.
- 24. Paraskevas, K. I., & Veith, F. J. (2023). Expansion of bypass as a revascularization option for patients with chronic limb-threatening ischemia. Angiology, 74(9), 809-811.
- 25. Antoniou GA, Chalmers N, Georgiadis GS, Lazarides MK, Antoniou SA, Serracino-Inglott F, Smyth JV, Murray D. A meta-analysis of endovascular versus surgical reconstruction of

rterial Journal
OF RARE
CARDIOVASCULAR DISEASES

- femoropopliteal arterial disease. Journal of Vascular Surgery 2013; 57(1): 242-253
- Yousry, M., Fathy, K. T., Afify, A. G., Hafez, A. M., & Taha, A. (2025). Endovascular treatment versus bypass in long SFA atherosclerotic lesions: a non-randomized comparative study. South Eastern European Journal of Public Health, 2270–2283. https://doi.org/10.70135/seejph.vi.4134
- 27. Mumtaz, A., Berlas, M. F. T., Malik, J., Bhojani, M. F., Moeed, A., Panhwar, W., ... & Tanveer, H. (2025). Comparison of Bypass Surgery Versus Endovascular Interventions for Peripheral Artery Disease Through Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Vascular and Interventional Radiology.
- Cotroneo, A. R., Iezzi, R., Marano, G., Fonio, P., Nessi, F., & Gandini, G. (2007). Hybrid therapy in patients with complex peripheral multifocal stenoobstructive vascular disease: two-year results. CardioVascular and Interventional radiology, 30, 355-361.
- Rocha-Singh, K. J., Jaff, M., Joye, J., Laird, J., Ansel, G., Schneider, P., & VIVA Physicians. (2012). Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: the XCELL trial. Catheterization and Cardiovascular Interventions, 80(6), 1042-1051.
- 30. Grip, O., Wanhainen, A., Michaëlsson, K., Lindhagen, L., & Björck, M. (2018). Open or endovascular revascularization in the treatment of acute lower limb ischaemia. Journal of British Surgery, 105(12), 1598-1606.
- Antoniou, G. A., Chalmers, N., Georgiadis, G. S., Lazarides, M. K., Antoniou, S. A., Serracino-Inglott, F., ... & Murray, D. (2013). A metaanalysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. Journal of vascular surgery, 57(1), 242-253.
- 32. Ziegler, K. R., Muto, A., Eghbalieh, S. D., & Dardik, A. (2011). Basic data related to surgical infrainguinal revascularization procedures: a twenty year update. Annals of vascular surgery, 25(3), 413-422.]
- 33. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007 Jan;45 Suppl S:S5-67. doi: 10.1016/j.jvs.2006.12.037. PMID: 17223489.
- 34. Menard MT, Farber A. Semin Vasc Surg, 2014;27(1):82–84
- Reinecke, H., Unrath, M., Freisinger, E., Bunzemeier, H., Meyborg, M., Luders, F., Gebauer, K., Roeder, N., Berger, K. and Malyar, N.M. (2015) Peropheral Arterial Disease and Critical Limb Ischemia: Still Poor Outcomes and Lack of Guideline Adherence. European Heart Journal, 36, 932-938. http://dx.doi.org/10.1093/eurheartj/ehv006.

- 36. Baril DT, Patel VI, Judelson DR, Goodney PP, McPhee JT, Hevelone ND, Cronenwett JL, Schanzer A; Vascular Study Group of New England. Outcomes of lower extremity bypass performed for acute limb ischemia. J Vasc Surg. 2013;58(4):949–956. doi:10.1016/j.jvs.2013.04.036
- 37. Menard MT, Farber A, Assmann SF, Choudhry NK, Conte MS, Creager MA, Dake MD, Jaff MR, Kaufman JA, Powell RJ, et al. Design and Rationale of the Best Endovascular Versus Best Surgical Therapy for Patients With Critical Limb Ischemia (BEST CLI) Trial. J Am Heart Assoc. 2016 Jul 8;5(7):e003219. doi:10.1161/JAHA.116.003219
- 38. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;45(Suppl 1):S5–S67. doi:10.1016/j.ejvs.2006.09.024
- 39. Setacci C, de Donato G, Teraa M, Moll FL, Ricco J B, Becker F, et al. Chapter IV: Treatment of Critical Limb Ischaemia. Eur J Vasc Endovasc Surg. 2011 Dec;42(Suppl 2):S43–S59. doi:10.1016/S1078-5884(11)60014-2
- 40. Ziegler KR, Muto A, Eghbalieh SD, Dardik A. Basic data related to surgical infrainguinal revascularization procedures: a twenty year update. Ann Vasc Surg. 2011 Apr;25(3):413–422. doi:10.1016/j.avsg.2010.10.010
- 41. Benoit E, O'Donnell TF Jr, Kitsios GD, Iafrati MD, Asher E, Bandyk DF, Hallett JW Jr, Lumsden AB, Pearl GJ, Roddy SP, Vijayaraghavan K, Patel AN. Improved amputation free survival in unreconstructable critical limb ischemia and its implications for clinical trial study design and quality measurement. J Vasc Surg. 2012 Mar;55(3):781–789. doi:10.1016/j.jvs.2011.10.089
- 42. Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45(2):312–315.
- 43. Pegler AH, Thanigaimani S, Pai SS, Morris D, Golledge J. Meta-Analysis of Randomised Controlled Trials Comparing Bypass and Endovascular Revascularisation for Peripheral Artery Disease. Vasc Endovascular Surg. 2025 Apr;59(3):277-287. doi: 10.1177/15385744241292123. Epub 2024 Oct 10. PMID: 39387438; PMCID: PMC11804153.
- Murakami A. Hybrid Operations in Patients with Peripheral Arterial Disease. Ann Vasc Dis. 2018 Mar 25;11(1):57-65. doi: 10.3400/avd.ra.18-00006. PMID: 29682108; PMCID: PMC5882361.
- 45. Darwish, Maram & Davies, Huw & Morgan, Emily & Meecham, L.. (2025). Short-term and long-term outcomes of hybrid revascularisation procedures in peripheral artery disease: a systematic review

- protocol. BMJ Open. 15. e096955. 10.1136/bmjopen-2024-096955.
- 46. Schrijver AM, Moll FL, De Vries JP. Hybrid procedures for peripheral obstructive disease. J Cardiovasc Surg (Torino). 2010 Dec;51(6):833-43. PMID: 21124279.]
- 47. Sydorenko, A., Liakhovskyi, V., & Riabushko, R. (2023). Experience of hybrid surgical treatment for multilevel occlusive-stenotic arterial lesions in the lower extremities. Current Issues in Modern Medicine: Bulletin of the Ukrainian Medical Stomatological Academy, 23(2.1), 164–169. https://doi.org/10.31718/2077-1096.23.2.1.164]
- 48. Franzese, M., Pucciarelli, A., Spione, F., Salemme, L., Popusoi, G., Ferrone, M., ... & Cioppa, A. (2023). Sirolimus-coated balloon in femoropopliteal steno-occlusive disease: efficacy, safety, and 1-year outcomes. an all-comers registry. Journal of Endovascular Therapy, 15266028231217657.
- Iida, O., Soga, Y., Saito, S., Mano, T., Hayakawa, N., Ichihashi, S., ... & Kozuki, A. (2024). A Novel Sirolimus-Coated Balloon for the Treatment of Femoropopliteal Lesions: The SELUTION SFA Japan Trial. Cardiovascular Interventions, 17(13), 1547-1556.
- 50. Franzese, M., Ciliberti, G., Salemme, L., Pucciarelli, A., Popusoi, G., Moscato, R., ... & Cioppa, A. (2025). Long-Term Efficacy and Safety of Sirolimus-Coated Balloon in Femoropopliteal Steno-Occlusive Disease: 3-Year Outcomes. Catheterization and Cardiovascular Interventions.
- 51. Elsayed, B., Subahi, A., Sattar, H., Abdelaziz, A., Mohamed, T., & Ali, O. E. (2025). In-Hospital Outcomes and Temporal Trends of Surgical Versus Intravascular Ultrasound–Guided Endovascular Interventions for Femoropopliteal Disease. Journal of the Society for Cardiovascular Angiography & Interventions, 102617.
- 52. Medina, F. A., Dubosq-Lebaz, M., Kim, J. M., & Secemsky, E. A. (2025). Intravascular Imaging for Peripheral Artery Disease and Endovascular Intervention of the Lower Extremities. Current Cardiovascular Imaging Reports, 18(1), 1-15.
- 53. Pan, D., Guo, J., Su, Z., Meng, W., Wang, J., Guo, J., & Gu, Y. (2023). Efficacy and safety of atherectomy combined with balloon angioplasty vs balloon angioplasty alone in patients with femoropopliteal lesions: a systematic review and meta-analysis of randomized controlled trials. Journal of Endovascular Therapy, 15266028231215354.
- 54. Molina Nácher V, Roselló Paredes JC, Núñez LG, et al. Comparative Long-Term Outcomes of Drug-Coated Balloons Alone Versus Combined Treatment with Rotational Atherectomy in the Treatment of Femoropopliteal Artery In-Stent Restenosis. Journal of Endovascular Therapy. 2025;0(0). doi:10.1177/15266028251329757
- 55. Farber, A., Menard, M. T., Conte, M. S., Kaufman, J. A., Powell, R. J., Choudhry, N. K., ... &

- Rosenfield, K. (2022). Surgery or endovascular therapy for chronic limb-threatening ischemia. New England Journal of Medicine, 387(25), 2305-2316
- 56. D'Angelo, O., Menard, M. T., & Farber, A. (2024). Common Criticisms and Rebuttals of the Best Endovascular Versus Best Surgical Therapy in Patients with Chronic Limb-Threatening Ischemia (BEST-CLI) Trial. Annals of Vascular Surgery, 107, 93-100.
- Murugavel, A., Savlania, A., Behera, A., & Kang, M. (2023). Comparison of GLASS Stage with WIfI Clinical Staging for Predicting Limb Salvage in Peripheral Arterial Disease. Journal of Vascular Surgery, 77(4), 35S.
- 58. Rossos, D., Mihailidis, A., & Laschowski, B. (2024, September). AI-powered smart glasses for sensing and recognition of human-robot walking environments. In 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) (pp. 62-67). IEEE.
- Yao, T., Lu, B., Kowarschik, M., Yuan, Y., Zhao, H., Ourselin, S., ... & Qi, P. (2025). Advancing embodied intelligence in robotic-assisted endovascular procedures: A systematic review of ai solutions. arXiv preprint arXiv:2504.15327.
- Cassano, R., Perri, P., Esposito, A., Intrieri, F., Sole, R., Curcio, F., & Trombino, S. (2023). Expanded polytetrafluoroethylene membranes for vascular stent coating: manufacturing, biomedical and surgical applications, innovations and case reports. Membranes, 13(2), 240.
- Bates, K. J., Moore, M. M., & Cibotti-Sun, M. (2024). 2024 lower extremity peripheral artery disease guideline-at-a-glance. Journal of the American College of Cardiology, 83(24), 2605-2609.
- 62. Members, W. C., Gerhard-Herman, M. D., Gornik, H. L., Barrett, C., Barshes, N. R., Corriere, M. A., ... & Halperin, J. L. (2016). 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135(12), e726.
- 63. Tang L, Paravastu SCV, Thomas SD, Tan E, Farmer E, Varcoe RL. Cost Analysis of Initial Treatment With Endovascular Revascularization, Open Surgery, or Primary Major Amputation in Patients With Peripheral Artery Disease. J Endovasc Ther. 2018 Aug;25(4):504-511. doi: 10.1177/1526602818774786. Epub 2018 May 14. PMID: 29756521.
- 64. Childers, C. P., Lamaina, M., Liu, C., Mak, S. S., & Shekelle, P. G. (2019). Cost-effectiveness of Leg Bypass versus Endovascular Therapy for Critical Limb Ischemia: A Systematic Review.
- Kluckner M, Gruber L, Wippel D, Lobenwein D, Westreicher W, Pilz M, Enzmann FK. Long-Term Outcome of Bypass Surgery versus Endovascular

PMCID: PMC10219229.