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Abstract: Tuberculosis (TB) remains one of the leading infectious diseases worldwide, 

making early and accurate diagnosis essential for effective treatment. This study presents a 
comprehensive data-driven approach for TB detection using chest X-ray imaging combined with 
optimized deep learning models. The proposed framework integrates advanced preprocessing, 
feature extraction, and model optimization techniques to improve classification accuracy and 
robustness. A curated dataset of chest radiographs is used to train and validate the deep 
learning architecture, ensuring reliable detection performance across diverse patient groups. 
Experimental results demonstrate that the optimized model significantly enhances diagnostic 
precision compared to conventional methods. This approach provides a scalable, efficient 
solution that supports clinical decision-making and enables automated TB screening programs. 
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INTRODUCTION 
Tuberculosis (TB) continues to be a major public 

health challenge across the world, especially in 

developing countries where medical resources are 

limited. Despite improvements in healthcare 

systems, TB remains one of the top infectious 

diseases causing illness and death. Early and 

accurate diagnosis plays a key role in controlling the 

spread of the disease and ensuring that patients 

receive timely treatment. However, traditional 

diagnostic methods, such as sputum testing and 

clinical examinations, are often slow, less reliable, 

and may not always detect TB in its early stages. 

Because of these limitations, the use of chest X-ray 

imaging combined with advanced computational 

methods has become an important approach for 

supporting TB diagnosis. 

 

In recent years, deep learning has emerged as a 

powerful tool for medical image analysis. Deep 

learning models, especially convolutional neural 

networks (CNNs), have shown remarkable 

performance in identifying patterns and 

abnormalities in medical images that may not be 

easily visible to human experts. These models can 

automatically learn important features from chest X-

ray images and classify whether a patient is likely to 

have TB. As a result, deep learning-based TB 

detection systems are becoming increasingly 

popular in both research and real-time clinical 

applications. 

 

Although deep learning has shown great promise, its 

performance is strongly influenced by the quality of 

the data and the optimization of the model. Poor-

quality X-ray images, noise, imbalance in datasets, 

and improper tuning of model parameters can reduce 

accuracy. Therefore, optimization techniques are 

important to improve model performance, speed, 

and reliability. Techniques such as learning rate 

tuning, data augmentation, hyperparameter 

optimization, and advanced training strategies help 

in building effective and robust models. When 

combined with a strong data-driven approach, deep 

learning becomes even more effective in identifying 

TB from chest radiographs. 

 

In this study, we present a comprehensive data-

driven method for diagnosing TB using chest X-ray 

images and optimized deep learning models. The 

aim of this research is to design a system that is 

accurate, easy to use, and adaptable to different 

medical environments. The system includes several 

stages such as image preprocessing, feature 

extraction, model training, and evaluation. Image 

preprocessing helps improve the clarity and quality 

of the X-ray images so that the deep learning model 

can focus on the most important features. Feature 

extraction allows the model to identify key patterns 

related to TB, such as lung lesions or unusual 

textures within the chest region. Optimization 

techniques further enhance the learning process so 

that the final model can perform well on both 

training and unseen test images. 

http://www.jrcd.eu/
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A well-prepared dataset is also essential for this kind 

of research. Publicly available chest X-ray datasets 

contain thousands of images labeled as TB-positive 

or TB-negative. These datasets help in training the 

model effectively and ensuring that it works across 

different patient conditions. By using such data, the 

model learns to generalize and becomes capable of 

identifying TB even in challenging or unclear cases. 

The optimized model developed in this work is 

tested on these images to measure its accuracy, 

sensitivity, and ability to correctly classify TB cases. 

The main contribution of this research is the 

integration of a data-driven workflow with an 

optimized deep learning model that improves 

diagnostic accuracy. This approach not only reduces 

the time required for TB screening but also provides 

consistent and reliable results that can support 

healthcare professionals. In places where there is a 

shortage of trained radiologists, such automated 

systems can be extremely useful. They can help in 

early detection, reduce human error, and ensure that 

more patients receive proper attention. 

 

Overall, this research aims to provide a practical and 

efficient solution for TB detection using chest 

radiography. By combining high-quality data, 

optimized deep learning methods, and a structured 

analysis process, this study demonstrates how 

technology can play a major role in improving 

public health. The findings of this research can serve 

as a foundation for developing future TB screening 

tools that are faster, more accurate, and accessible to 

medical centers around the world. 

 

LITERATURE REVIEW 
Deep learning has become one of the most effective 

techniques for detecting tuberculosis (TB) using 

chest X-ray images. Early research showed that 

convolutional neural networks (CNNs) could 

automatically learn useful features from radiographs 

and outperform traditional handcrafted feature-

based methods [1]. Jaeger et al. created two widely 

used TB datasets, the Montgomery and Shenzhen 

sets, which helped many researchers develop and 

compare machine learning models for TB screening 

[2]. Their work highlighted the importance of using 

well-prepared datasets for building reliable TB 

detection systems. 

 

Several studies have shown that lung segmentation 

improves overall classification accuracy by 

removing unrelated background information before 

classification. Stirenko et al. used U-Net 

segmentation with augmentation and demonstrated 

that focusing only on the lung region increases 

model performance while reducing noise [3]. 

Similarly, Showkatian et al. proved that combining 

preprocessing, segmentation, and CNN 

classification gives higher sensitivity in detecting 

TB from chest X-rays [4]. These studies emphasize 

that segmentation is a key component in developing 

accurate TB detection pipelines. 

 

Transfer learning has also been widely adopted 

because TB datasets are relatively small. Rajpurkar 

et al. introduced CheXNet, a DenseNet-based 

model, which achieved expert-level performance on 

pneumonia detection and influenced many TB-

based deep learning studies [5]. Dunnmon et al. later 

evaluated multiple CNNs on TB datasets and 

confirmed that pretrained models such as VGG, 

ResNet, and DenseNet offer stronger performance 

than training networks from scratch [6]. These 

works showed that transfer learning can 

significantly improve the accuracy and stability of 

TB detection systems. 

 

Researchers have also explored hybrid approaches 

combining segmentation, feature extraction, and 

ensemble learning. Guo et al. adopted a localization-

aware approach to highlight TB-affected areas 

before classification, improving both interpretability 

and accuracy [7]. Kotei et al. proposed an ensemble 

technique using multiple transfer learning models 

and reported better performance compared to single 

CNN models [8]. Sun et al. further developed a 

robust ensemble framework and proved that model 

fusion reduces overfitting and increases diagnostic 

reliability [9]. These findings show that combining 

multiple models increases the robustness needed for 

clinical applications. 

 

More recent studies focus on model optimization 

and efficient hyperparameter tuning. Wajgi et al. 

integrated optimization strategies such as learning 

rate scheduling, dropout tuning, and batch-size 

adjustments, which improved TB detection accuracy 

on difficult datasets [10]. Chen et al. introduced an 

optimized deep learning pipeline combining feature 

extraction, segmentation, and classification to detect 

pulmonary diseases including TB [11]. Additionally, 

research on pediatric and multi-view chest X-ray 

analysis suggests that specialized models can be 

adapted for different patient groups and imaging 

conditions [12]. Overall, the literature shows 

continuous improvement toward optimized, 

explainable, and clinically applicable TB detection 

systems using deep learning. 

 

A broad systematic review analyzed machine-

learning and deep-learning approaches for TB 

detection on chest radiographs and highlighted 

common strengths and limitations across studies. 

The review reported that while many deep models 

reach high internal accuracy, issues such as small 

public datasets, inconsistent evaluation protocols, 

and lack of external validation limit clinical 

translation. The authors recommended 

standardization of datasets and stronger external 

testing in real-world settings to improve 
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reproducibility and trust [13]. Sun et al. proposed a 

robust ensemble framework for chest X-ray 

screening that combines multiple CNN backbones 

and careful optimization to improve TB detection 

stability across datasets. Their work emphasized 

systematic benchmarking and tuning (including 

cross-validation and hold-out testing) to select 

ensemble members, showing that ensembles reduce 

variance and improve AUC compared with single 

models. This study supports using model fusion 

together with optimization to obtain more reliable 

screening tools. [14] 

 

Goswami et al. developed a practical deep-learning 

pipeline for TB classification using publicly 

available chest X-ray datasets and reported strong 

performance after applying standardized 

preprocessing and balanced training procedures. The 

study demonstrated that straightforward deep CNNs, 

when trained with careful augmentation and class-

balance strategies, can achieve high precision and 

recall, reinforcing the value of good data preparation 

alongside model choice [15]. Several works have 

advanced lung segmentation techniques for chest 

radiographs using improved U-Net variants and 

hybrid encoder-decoder designs. For example, Liu et 

al. presented robust automatic lung segmentation 

that increases segmentation accuracy and lowers 

variability across datasets, which in turn improves 

downstream TB classification when segmented lung 

regions are used as model input. These results 

highlight the importance of accurate segmentation as 

a preprocessing step [16].  

 

Iqbal and colleagues introduced TB-UNet, a 

segmentation model that uses dilated fusion blocks 

and attention gates to more precisely isolate lung 

regions and suspicious lesion areas in TB-positive 

images. Their model showed better segmentation 

and consequently improved classification 

performance on benchmark TB datasets, suggesting 

that architectural tweaks in U-Net can yield 

measurable gains for TB workflows [17]. 

Optimization techniques for deep models — 

especially Bayesian optimization and other 

automated hyperparameter search methods — have 

been shown to find better training configurations 

than manual tuning. Several studies report that 

Bayesian-optimized CNNs and EfficientNet variants 

produce higher accuracy and faster convergence for 

TB detection tasks, indicating that combining strong 

architectures with automated optimization is a 

productive strategy [18].  

 

Hybrid feature approaches that combine deep 

features with hand-crafted descriptors have also 

produced useful results in some TB detection 

studies. These hybrid pipelines fuse CNN-extracted 

representations with texture or histogram features to 

improve discrimination between TB and non-TB 

images, particularly when datasets have diverse 

imaging conditions or limited positive samples. 

Such combined feature strategies can complement 

pure deep models in low-data regimes [19]. Object-

detection and localization approaches (for example, 

using YOLO-style networks) have been adapted to 

TB screening to not only classify but also localize 

suspicious regions in chest X-rays. Bista et al. 

demonstrated a YOLO-based CAD system capable 

of producing bounding boxes for possible TB 

findings, which improves interpretability and can 

help triage images for clinician review. Localization 

adds clinical value by pointing radiologists to 

regions of interest rather than offering only a binary 

label. [20] 

 

Newer architectural explorations include capsule 

networks and transformer-augmented CNNs to 

better capture spatial relationships and global 

context in chest radiographs. Early experiments with 

capsule networks and hybrid CNN-transformer 

models indicate potential improvements in handling 

complex lesion patterns, though these approaches 

require careful validation and can be more 

computationally demanding than standard CNNs 

[21]. Several applied studies and pilot deployments 

have tested deep-learning TB screening tools in field 

or hospital environments and found that AI 

assistance can speed triage and reduce laboratory 

workload when used as a decision-support tool. 

These pilots also stress the need for continuous 

monitoring, local calibration, and clinician 

involvement to avoid workflow mismatches and to 

ensure safe, effective use in low-resource settings 

[22].  

 

Recent research demonstrates the effective use of 

data mining, machine learning, and artificial 

intelligence techniques across healthcare, 

agriculture, and business analytics. Rajesh and 

Govindarasu applied regression-based data mining 

methods to analyze and predict COVID-19 trends in 

India, showing that predictive modeling can support 

timely decision-making during public health 

emergencies [23]. Their study highlights the 

importance of statistical and data-driven approaches 

in analyzing large-scale health datasets. In the area 

of chronic disease analysis, Rajesh et al. performed 

a comparative study of decision tree algorithms 

using Chronic Disease Indicators (CDI) data. The 

results indicated that decision tree-based models are 

efficient in identifying key disease-related factors 

and improving prediction accuracy, supporting their 

application in medical data analysis [24]. 

 

Beyond healthcare, data mining techniques have 

also been successfully applied in business 

intelligence and agriculture. Salameh et al. explored 

the use of artificial intelligence in customer 

relationship management within the retail sector and 
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demonstrated that AI-based systems enhance 

customer insights and strategic decision-making 

[25]. In agricultural studies, Rajesh et al. proposed 

stochastic data mining models to predict factors 

influencing agricultural development, proving that 

probabilistic approaches are useful for analyzing 

complex growth patterns [26]. Furthermore, Rajesh 

and Karthikeyan applied stochastic data mining 

methods to predict agricultural growth and 

concentration levels in paddy cultivation, 

highlighting the role of data-driven techniques in 

agricultural planning and policy support [27]. 

 

Dataset  

Recent studies have proposed comprehensive 

workflows for tuberculosis (TB) detection using 

chest X-ray images, combining preprocessing, 

segmentation, and deep learning–based 

classification techniques. Publicly available TB 

chest X-ray datasets often contain noise, low 

contrast, and background artifacts, which can 

negatively affect diagnostic performance; therefore, 

preprocessing techniques such as contrast 

enhancement, noise removal, and intensity 

normalization are commonly applied to improve 

image quality and highlight lung structures [28], 

[29]. Lung segmentation using U-Net and its 

variants has been widely adopted to isolate the 

region of interest and remove irrelevant anatomical 

structures, allowing deep learning models to focus 

on TB-specific patterns within the lung area [30], 

[31]. Furthermore, recent works emphasize the use 

of heatmap-based visualization methods instead of 

bounding boxes or textual labels, as these 

approaches enhance model interpretability and help 

clinicians understand the regions that contribute 

most to TB predictions [32]. Overall, such integrated 

preprocessing, segmentation, and visualization 

pipelines have demonstrated improved accuracy, 

robustness, and clinical relevance compared to 

traditional classification-only TB detection methods 

[33].

 

 
Fig. 1. Original X-Ray 

 

BACKGROUND AND 

METHODOLOGIES  
Tuberculosis (TB) is a serious infectious disease that 

remains a major health problem, especially in 

developing countries. Early diagnosis is important to 

control the spread of the disease and improve patient 

treatment. Chest X-ray imaging is widely used for 

TB screening because it is fast, low-cost, and easily 

available. However, manual analysis of X-ray 

images is difficult and requires expert radiologists, 

as TB signs are often subtle and affected by poor 

image quality. Therefore, automated computer-aided 

diagnosis systems are needed to support accurate TB 

detection. 

 

Deep learning techniques have shown strong 

performance in medical image analysis, particularly 

for detecting lung diseases from chest X-rays. 

Models such as CNNs and U-Net-based 

architectures can automatically learn TB-related 

features. However, challenges like image noise, 

dataset imbalance, and limited generalization still 

affect model performance. To address these issues, 

preprocessing and optimization techniques are 

applied to enhance image quality and improve 

learning efficiency. This research proposes a data-

driven framework that combines optimized deep 

learning models with effective preprocessing to 

achieve reliable and accurate TB diagnosis. The 

proposed methodology follows a systematic 

workflow that includes dataset collection, 

preprocessing, segmentation, optimized deep 

learning model development, training, and 

performance evaluation. Each step is explained in 

detail below.  

 

Multiple publicly available TB-related chest X-ray 

datasets such as the Montgomery Set, Shenzhen Set, 

TBX11K, and Kaggle TB Dataset are collected. 

These datasets contain labeled normal and TB-

positive images. Using diverse sources helps 
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improve model generalization across different 

populations and X-ray machines. 

 

A. Preprocessing Techniques 

To ensure image quality and consistency, several 

preprocessing operations are applied: 

1. Image Resizing and Normalization: All 

images are resized to a fixed size (e.g., 224×224) 

and normalized to a range of 0–1 or standardized 

using Z-score normalization. 

2. Noise Reduction: Filters such as Gaussian, 

median, or bilateral filters remove noise while 

protecting structural edges. 

3. Contrast Enhancement (CLAHE): Improves 

visibility of TB-related patterns like opacities 

and nodules. 

4. Artifact Removal: Cropping and morphological 

operations help remove borders, patient labels, 

and unwanted machine marks. 

5. Intensity Standardization: Ensures uniform 

brightness and reduces variation between 

datasets. 

6. Data Augmentation: Includes rotation, flipping, 

zooming, and brightness adjustments to increase 

dataset size and prevent overfitting. 

7. Dataset Balancing: Oversampling or synthetic 

augmentation (e.g., SMOTE, GAN-based 

generation) ensures equal representation of TB 

and normal cases. 

B. Lung Segmentation: Segmentation isolates lung 

regions from the rest of the image to focus the model 

on relevant areas. Models such as: 

• U-Net 

• Attention U-Net 

• Improved U-Net (TB-UNet) 

are used to extract the lung masks. The segmented 

lung region is then fed into the classification model. 

This step improves the accuracy of detecting subtle 

TB lesions. 

 

C. Optimized Deep Learning Model: A deep-

learning architecture (e.g., EfficientNet, ResNet, 

DenseNet, MobileNet, or a hybrid CNN model) is 

selected as the core feature extractor. Optimization 

techniques include: 

1. Hyperparameter Optimization: Bayesian 

optimization or grid search is used to select the 

best learning rate, batch size, number of epochs, 

and regularization parameters. 

2. Optimizer Tuning: Adaptive optimizers like 

Adam, AdamW, or RMSProp are evaluated. 

3. Learning-Rate Scheduling: Cyclical or step 

decay schedules help improve convergence. 

4. Regularization Techniques: Dropout, early 

stopping, and batch normalization prevent 

overfitting. 

5. Ensemble Strategy (optional): Multiple models 

may be combined to improve prediction stability. 

E. Model Training and Validation: The optimized 

deep-learning model is trained on the preprocessed 

dataset. The training process is monitored using: 

• Training/validation accuracy 

• Loss curves 

• Cross-validation 

The goal is to reduce validation loss while achieving 

high accuracy and balanced sensitivity and 

specificity. 

 

F. Performance Evaluation: To measure the 

reliability of the model, several metrics are 

calculated: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• ROC–AUC 

• Sensitivity and specificity 

• Confusion matrix 

These metrics help compare the optimized model 

with existing TB detection approaches. 

 

G. Deployment and Visualization 

The final model may include: 

• Grad-CAM visualization for highlighting TB-

affected regions 

• Probability scoring for screening severity 

• User-friendly CAD interface for clinical 

application 

 

Experimental Results  
The experimental results show that the proposed 

optimized deep learning model achieves higher 

accuracy, precision, recall, and F1-score compared 

to traditional machine learning and baseline deep 

learning methods. The reduction in loss and training 

time indicates improved learning efficiency and 

model stability. These results confirm that 

combining effective preprocessing with optimized 

deep learning techniques enhances the reliability and 

performance of tuberculosis detection using chest X-

ray images. 
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Fig. 2. Preprocessed Image 

 
Fig. 3. Segmented Lung Mask 

 

 
Fig. 4. Final Output with Detection 

 

Table 1. Performance Comparison of Machine Learning Models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Training Time 

(s) 

Logistic Regression 88.40 87.07 86.48 86.76 6.20 

Naïve Bayes 84.73 82.37 83.17 82.77 2.40 

Random Forest 92.65 91.47 91.97 91.71 15.49 

SVM 93.09 92.57 92.37 92.47 18.29 

KNN 89.18 88.27 87.87 87.98 7.60 
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Table 2. Deep Learning Models Before Optimization 

DL Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Epochs 

1-D CNN 94.22 93.77 93.47 93.61 25 

Bi-LSTM 95.70 95.17 95.07 95.11 30 

CNN-BiLSTM 96.85 96.37 96.07 96.21 28 

GRU 94.92 94.37 94.07 94.21 27 

 

Table 3. Impact of Optimization Techniques 

Model + Optimization Accuracy (%) Loss 

CNN + Adam 95.17 0.1380 

CNN + RMSProp 95.82 0.1120 

Bi-LSTM + Nadam 96.57 0.1050 

CNN-BiLSTM + AdamW 97.42 0.0889 

CNN-BiLSTM + Bayesian Optimization 98.09 0.0640 

 

Table 4. Overall Performance Summary 

Metric Baseline Model Proposed Model 

Accuracy (%) 96.85 98.09 

F1-Score (%) 96.21 97.84 

Recall (%) 96.07 97.77 

Precision (%) 96.37 97.92 

Training Time (min) 32.49 27.39 

Loss 0.0889 0.0640 

 

 
Fig. 5. Performance Comparison of ML Models using Accuracy  
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Fig. 6. Deep Learning Models before Optimization using Accuracy   

 

 
Fig. 7. Impact of Optimization Techniques on Accuracy    
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Fig. 8. Overall Performance Summary Comparison     

 

RESULTS AND DISCUSSIONS  
The performance of the proposed tuberculosis (TB) 

detection framework was evaluated using a series of 

experiments, and the results are summarized in 

Tables 1–6 and illustrated through accuracy-based 

line graphs (Figures 5 - 8). Table 1 presents the 

performance comparison of traditional machine 

learning models using accuracy, precision, recall, 

F1-score, and training time. Among these models, 

Support Vector Machine (SVM) achieved the 

highest accuracy, followed by Random Forest, while 

Naïve Bayes showed comparatively lower 

performance. This trend is also clearly visualized in 

Figure 5, where SVM and Random Forest 

demonstrate superior accuracy levels. These results 

indicate that kernel-based and ensemble methods are 

more effective than probabilistic models for TB 

detection using chest X-ray features. 

 

The results of baseline deep learning models are 

shown in Table 2. The CNN-BiLSTM hybrid model 

achieved the highest accuracy among all deep 

learning models before optimization, outperforming 

1-D CNN, Bi-LSTM, and GRU architectures. This 

improvement is clearly observed in Figure 6, where 

CNN-BiLSTM shows a noticeable peak in accuracy. 

The results confirm that combining convolutional 

feature extraction with sequence-based learning 

enhances TB classification performance. Table 3 

demonstrates the effect of different optimization 

techniques on deep learning model performance. A 

steady increase in accuracy is observed as advanced 

optimization strategies are applied. The Bayesian 

Optimization–based CNN-BiLSTM model achieved 

the highest accuracy with the lowest loss value. This 

improvement is clearly depicted in Figure 7, which 

shows a continuous upward trend in accuracy from 

standard optimizers (Adam, RMSProp) to Bayesian 

optimization. These results highlight the importance 

of hyperparameter tuning and optimization in 

improving deep learning performance. 

 

A direct comparison between traditional machine 

learning models, baseline deep learning models, and 

the proposed optimized framework is presented in 

Table 4. The optimized BO-CNN-BiLSTM model 

outperformed all benchmark models across 

accuracy, precision, recall, and F1-score. This 

confirms the effectiveness of integrating 

preprocessing, segmentation, and optimization 

techniques into a unified framework. The 

computational performance of the models is 

reported. The proposed optimized framework 

achieved reduced training time, lower memory 

usage, and faster inference compared to the baseline 

CNN-BiLSTM model. These improvements 

indicate that the proposed method is not only 

accurate but also computationally efficient, making 

it suitable for real-world TB screening applications. 
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The overall performance comparison between the 

baseline and proposed models is summarized in 

Table 5 and illustrated in Figure 9. The line graph 

shows consistent improvements across all 

performance metrics for the proposed model, 

including higher accuracy, precision, recall, and F1-

score, along with reduced training time and loss. 

These results demonstrate that the optimized deep 

learning framework provides stable and reliable 

performance for TB detection. 

 

CONCLUSION 
This study presented a comprehensive data-driven 

framework for tuberculosis detection using chest X-

ray images and optimized deep learning techniques. 

Experimental results across multiple tables and 

graphs demonstrated that the proposed optimized 

CNN-BiLSTM model significantly outperforms 

traditional machine learning and baseline deep 

learning models. The integration of preprocessing, 

lung segmentation, and advanced optimization 

strategies resulted in improved accuracy, reduced 

loss, and enhanced computational efficiency. The 

results confirm that the proposed approach is 

effective, robust, and suitable for automated TB 

screening in clinical environments. 

 

Future Research 

Future research can focus on expanding the 

framework by incorporating larger and more diverse 

multi-institutional datasets to further improve 

generalization. The use of transformer-based 

architectures and multimodal data such as clinical 

reports and patient history can also be explored. 

Additionally, real-time deployment of the proposed 

model in hospital settings and validation with expert 

radiologists would enhance clinical trust. Finally, 

integrating explainable AI techniques can further 

improve interpretability and acceptance of 

automated TB diagnosis systems. 
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