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Abstract: Tuberculosis (TB) remains one of the leading infectious diseases worldwide,
making early and accurate diagnosis essential for effective treatment. This study presents a
comprehensive data-driven approach for TB detection using chest X-ray imaging combined with

Article History optimized deep learning models. The proposed framework integrates advanced preprocessing,
g:f:s“e’s_d’ 1’27'3;'332255 feature extraction, and model optimization techniques to improve classification accuracy and

robustness. A curated dataset of chest radiographs is used to train and validate the deep
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Optimization Techniques.

Experimental results demonstrate that the optimized model significantly enhances diagnostic
precision compared to conventional methods. This approach provides a scalable, efficient
solution that supports clinical decision-making and enables automated TB screening programs.
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INTRODUCTION

Tuberculosis (TB) continues to be a major public
health challenge across the world, especially in
developing countries where medical resources are
limited. Despite improvements in healthcare
systems, TB remains one of the top infectious
diseases causing illness and death. Early and
accurate diagnosis plays a key role in controlling the
spread of the disease and ensuring that patients
receive timely treatment. However, traditional
diagnostic methods, such as sputum testing and
clinical examinations, are often slow, less reliable,
and may not always detect TB in its early stages.
Because of these limitations, the use of chest X-ray
imaging combined with advanced computational
methods has become an important approach for
supporting TB diagnosis.

In recent years, deep learning has emerged as a
powerful tool for medical image analysis. Deep
learning models, especially convolutional neural
networks (CNNs), have shown remarkable
performance in identifying patterns and
abnormalities in medical images that may not be
easily visible to human experts. These models can
automatically learn important features from chest X-
ray images and classify whether a patient is likely to
have TB. As a result, deep learning-based TB
detection systems are becoming increasingly
popular in both research and real-time clinical
applications.

Although deep learning has shown great promise, its
performance is strongly influenced by the quality of
the data and the optimization of the model. Poor-
quality X-ray images, noise, imbalance in datasets,
and improper tuning of model parameters can reduce
accuracy. Therefore, optimization techniques are
important to improve model performance, speed,
and reliability. Techniques such as learning rate
tuning, data augmentation, hyperparameter
optimization, and advanced training strategies help
in building effective and robust models. When
combined with a strong data-driven approach, deep
learning becomes even more effective in identifying
TB from chest radiographs.

In this study, we present a comprehensive data-
driven method for diagnosing TB using chest X-ray
images and optimized deep learning models. The
aim of this research is to design a system that is
accurate, easy to use, and adaptable to different
medical environments. The system includes several
stages such as image preprocessing, feature
extraction, model training, and evaluation. Image
preprocessing helps improve the clarity and quality
of the X-ray images so that the deep learning model
can focus on the most important features. Feature
extraction allows the model to identify key patterns
related to TB, such as lung lesions or unusual
textures within the chest region. Optimization
techniques further enhance the learning process so
that the final model can perform well on both
training and unseen test images.
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A well-prepared dataset is also essential for this kind
of research. Publicly available chest X-ray datasets
contain thousands of images labeled as TB-positive
or TB-negative. These datasets help in training the
model effectively and ensuring that it works across
different patient conditions. By using such data, the
model learns to generalize and becomes capable of
identifying TB even in challenging or unclear cases.
The optimized model developed in this work is
tested on these images to measure its accuracy,
sensitivity, and ability to correctly classify TB cases.
The main contribution of this research is the
integration of a data-driven workflow with an
optimized deep learning model that improves
diagnostic accuracy. This approach not only reduces
the time required for TB screening but also provides
consistent and reliable results that can support
healthcare professionals. In places where there is a
shortage of trained radiologists, such automated
systems can be extremely useful. They can help in
early detection, reduce human error, and ensure that
more patients receive proper attention.

Overall, this research aims to provide a practical and
efficient solution for TB detection using chest
radiography. By combining high-quality data,
optimized deep learning methods, and a structured
analysis process, this study demonstrates how
technology can play a major role in improving
public health. The findings of this research can serve
as a foundation for developing future TB screening
tools that are faster, more accurate, and accessible to
medical centers around the world.

LITERATURE REVIEW

Deep learning has become one of the most effective
techniques for detecting tuberculosis (TB) using
chest X-ray images. Early research showed that
convolutional neural networks (CNNs) could
automatically learn useful features from radiographs
and outperform traditional handcrafted feature-
based methods [1]. Jaeger et al. created two widely
used TB datasets, the Montgomery and Shenzhen
sets, which helped many researchers develop and
compare machine learning models for TB screening
[2]. Their work highlighted the importance of using
well-prepared datasets for building reliable TB
detection systems.

Several studies have shown that lung segmentation
improves overall classification accuracy by
removing unrelated background information before
classification. Stirenko et al. wused U-Net
segmentation with augmentation and demonstrated
that focusing only on the lung region increases
model performance while reducing noise [3].
Similarly, Showkatian et al. proved that combining
preprocessing, segmentation, and CNN
classification gives higher sensitivity in detecting
TB from chest X-rays [4]. These studies emphasize

that segmentation is a key component in developing
accurate TB detection pipelines.

Transfer learning has also been widely adopted
because TB datasets are relatively small. Rajpurkar
et al. introduced CheXNet, a DenseNet-based
model, which achieved expert-level performance on
pneumonia detection and influenced many TB-
based deep learning studies [5]. Dunnmon et al. later
evaluated multiple CNNs on TB datasets and
confirmed that pretrained models such as VGG,
ResNet, and DenseNet offer stronger performance
than training networks from scratch [6]. These
works showed that transfer learning can
significantly improve the accuracy and stability of
TB detection systems.

Researchers have also explored hybrid approaches
combining segmentation, feature extraction, and
ensemble learning. Guo et al. adopted a localization-
aware approach to highlight TB-affected areas
before classification, improving both interpretability
and accuracy [7]. Kotei et al. proposed an ensemble
technique using multiple transfer learning models
and reported better performance compared to single
CNN models [8]. Sun et al. further developed a
robust ensemble framework and proved that model
fusion reduces overfitting and increases diagnostic
reliability [9]. These findings show that combining
multiple models increases the robustness needed for
clinical applications.

More recent studies focus on model optimization
and efficient hyperparameter tuning. Wajgi et al.
integrated optimization strategies such as learning
rate scheduling, dropout tuning, and batch-size
adjustments, which improved TB detection accuracy
on difficult datasets [10]. Chen et al. introduced an
optimized deep learning pipeline combining feature
extraction, segmentation, and classification to detect
pulmonary diseases including TB [11]. Additionally,
research on pediatric and multi-view chest X-ray
analysis suggests that specialized models can be
adapted for different patient groups and imaging
conditions [12]. Overall, the literature shows
continuous  improvement toward optimized,
explainable, and clinically applicable TB detection
systems using deep learning.

A broad systematic review analyzed machine-
learning and deep-learning approaches for TB
detection on chest radiographs and highlighted
common strengths and limitations across studies.
The review reported that while many deep models
reach high internal accuracy, issues such as small
public datasets, inconsistent evaluation protocols,
and lack of external validation limit clinical
translation. The authors recommended
standardization of datasets and stronger external
testing in real-world settings to improve
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reproducibility and trust [13]. Sun et al. proposed a
robust ensemble framework for chest X-ray
screening that combines multiple CNN backbones
and careful optimization to improve TB detection
stability across datasets. Their work emphasized
systematic benchmarking and tuning (including
cross-validation and hold-out testing) to select
ensemble members, showing that ensembles reduce
variance and improve AUC compared with single
models. This study supports using model fusion
together with optimization to obtain more reliable
screening tools. [14]

Goswami et al. developed a practical deep-learning
pipeline for TB classification using publicly
available chest X-ray datasets and reported strong
performance after  applying standardized
preprocessing and balanced training procedures. The
study demonstrated that straightforward deep CNNSs,
when trained with careful augmentation and class-
balance strategies, can achieve high precision and
recall, reinforcing the value of good data preparation
alongside model choice [15]. Several works have
advanced lung segmentation techniques for chest
radiographs using improved U-Net variants and
hybrid encoder-decoder designs. For example, Liu et
al. presented robust automatic lung segmentation
that increases segmentation accuracy and lowers
variability across datasets, which in turn improves
downstream TB classification when segmented lung
regions are used as model input. These results
highlight the importance of accurate segmentation as
a preprocessing step [16].

Igbal and colleagues introduced TB-UNet, a
segmentation model that uses dilated fusion blocks
and attention gates to more precisely isolate lung
regions and suspicious lesion areas in TB-positive
images. Their model showed better segmentation
and  consequently improved  classification
performance on benchmark TB datasets, suggesting
that architectural tweaks in U-Net can yield

images, particularly when datasets have diverse
imaging conditions or limited positive samples.
Such combined feature strategies can complement
pure deep models in low-data regimes [19]. Object-
detection and localization approaches (for example,
using YOLO-style networks) have been adapted to
TB screening to not only classify but also localize
suspicious regions in chest X-rays. Bista et al.
demonstrated a YOLO-based CAD system capable
of producing bounding boxes for possible TB
findings, which improves interpretability and can
help triage images for clinician review. Localization
adds clinical value by pointing radiologists to
regions of interest rather than offering only a binary
label. [20]

Newer architectural explorations include capsule
networks and transformer-augmented CNNs to
better capture spatial relationships and global
context in chest radiographs. Early experiments with
capsule networks and hybrid CNN-transformer
models indicate potential improvements in handling
complex lesion patterns, though these approaches
require careful validation and can be more
computationally demanding than standard CNNs
[21]. Several applied studies and pilot deployments
have tested deep-learning TB screening tools in field
or hospital environments and found that Al
assistance can speed triage and reduce laboratory
workload when used as a decision-support tool.
These pilots also stress the need for continuous
monitoring, local calibration, and clinician
involvement to avoid workflow mismatches and to
ensure safe, effective use in low-resource settings
[22].

Recent research demonstrates the effective use of
data mining, machine learning, and artificial
intelligence ~ techniques  across  healthcare,
agriculture, and business analytics. Rajesh and
Govindarasu applied regression-based data mining
methods to analyze and predict COVID-19 trends in

measurable gains for TB workflows [17]. India, showing that predictive modeling can support
Optimization techniques for deep models — timely decision-making during public health
especially Bayesian optimization and other emergencies [23]. Their study highlights the

automated hyperparameter search methods — have
been shown to find better training configurations
than manual tuning. Several studies report that
Bayesian-optimized CNNs and EfficientNet variants
produce higher accuracy and faster convergence for
TB detection tasks, indicating that combining strong
architectures with automated optimization is a
productive strategy [18].

Hybrid feature approaches that combine deep
features with hand-crafted descriptors have also
produced useful results in some TB detection
studies. These hybrid pipelines fuse CNN-extracted
representations with texture or histogram features to
improve discrimination between TB and non-TB

importance of statistical and data-driven approaches
in analyzing large-scale health datasets. In the area
of chronic disease analysis, Rajesh et al. performed
a comparative study of decision tree algorithms
using Chronic Disease Indicators (CDI) data. The
results indicated that decision tree-based models are
efficient in identifying key disease-related factors
and improving prediction accuracy, supporting their
application in medical data analysis [24].

Beyond healthcare, data mining techniques have
also been successfully applied in business
intelligence and agriculture. Salameh et al. explored
the use of artificial intelligence in customer
relationship management within the retail sector and
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demonstrated that Al-based systems enhance negatively affect diagnostic performance; therefore,
customer insights and strategic decision-making preprocessing  techniques such as contrast
[25]. In agricultural studies, Rajesh et al. proposed enhancement, noise removal, and intensity

stochastic data mining models to predict factors
influencing agricultural development, proving that
probabilistic approaches are useful for analyzing
complex growth patterns [26]. Furthermore, Rajesh
and Karthikeyan applied stochastic data mining
methods to predict agricultural growth and
concentration levels in paddy cultivation,
highlighting the role of data-driven techniques in
agricultural planning and policy support [27].

Dataset

Recent studies have proposed comprehensive
workflows for tuberculosis (TB) detection using
chest X-ray images, combining preprocessing,
segmentation, and deep learning—based
classification techniques. Publicly available TB
chest X-ray datasets often contain noise, low
contrast, and background artifacts, which can

normalization are commonly applied to improve
image quality and highlight lung structures [28],
[29]. Lung segmentation using U-Net and its
variants has been widely adopted to isolate the
region of interest and remove irrelevant anatomical
structures, allowing deep learning models to focus
on TB-specific patterns within the lung area [30],
[31]. Furthermore, recent works emphasize the use
of heatmap-based visualization methods instead of
bounding boxes or textual labels, as these
approaches enhance model interpretability and help
clinicians understand the regions that contribute
most to TB predictions [32]. Overall, such integrated
preprocessing, segmentation, and visualization
pipelines have demonstrated improved accuracy,
robustness, and clinical relevance compared to
traditional classification-only TB detection methods
[33].

Fig. 1. Original X-Ray

AND

BACKGROUND
METHODOLOGIES

Tuberculosis (TB) is a serious infectious disease that
remains a major health problem, especially in
developing countries. Early diagnosis is important to
control the spread of the disease and improve patient
treatment. Chest X-ray imaging is widely used for
TB screening because it is fast, low-cost, and easily

features. However, challenges like image noise,
dataset imbalance, and limited generalization still
affect model performance. To address these issues,
preprocessing and optimization techniques are
applied to enhance image quality and improve
learning efficiency. This research proposes a data-
driven framework that combines optimized deep
learning models with effective preprocessing to
achieve reliable and accurate TB diagnosis. The

available. However, manual analysis of X-ray proposed methodology follows a systematic
images is difficult and requires expert radiologists, workflow that includes dataset collection,
as TB signs are often subtle and affected by poor preprocessing, segmentation, optimized deep
image quality. Therefore, automated computer-aided learning model development, training, and

diagnosis systems are needed to support accurate TB
detection.

Deep learning techniques have shown strong
performance in medical image analysis, particularly
for detecting lung diseases from chest X-rays.
Models such as CNNs and U-Net-based
architectures can automatically learn TB-related

performance evaluation. Each step is explained in
detail below.

Multiple publicly available TB-related chest X-ray
datasets such as the Montgomery Set, Shenzhen Set,
TBX11K, and Kaggle TB Dataset are collected.
These datasets contain labeled normal and TB-
positive images. Using diverse sources helps
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improve model generalization across different
populations and X-ray machines.

A. Preprocessing Techniques

To ensure image quality and consistency, several

preprocessing operations are applied:

1. Image Resizing and Normalization: All
images are resized to a fixed size (e.g., 224x224)
and normalized to a range of 0—1 or standardized
using Z-score normalization.

2. Noise Reduction: Filters such as Gaussian,
median, or bilateral filters remove noise while
protecting structural edges.

3. Contrast Enhancement (CLAHE): Improves
visibility of TB-related patterns like opacities
and nodules.

4. Artifact Removal: Cropping and morphological

4. Regularization Techniques: Dropout, early
stopping, and batch normalization prevent
overfitting.

5. Ensemble Strategy (optional): Multiple models
may be combined to improve prediction stability.

E. Model Training and Validation: The optimized

deep-learning model is trained on the preprocessed

dataset. The training process is monitored using:

e Training/validation accuracy

e Loss curves

e Cross-validation

The goal is to reduce validation loss while achieving

high accuracy and balanced sensitivity and

specificity.

F. Performance Evaluation: To measure the
reliability of the model, several metrics are

operations help remove borders, patient labels, calculated:
and unwanted machine marks. e Accuracy
5. Intensity Standardization: Ensures uniform e Precision
brightness and reduces variation between e Recall
datasets. e Fl-score
6. Data Augmentation: Includes rotation, flipping, e ROC_AUC
zooming, and brightness adjustments to increase e e
dataset size and prevent overfitting. * Sensm\./lty and §pe01ﬁc1ty
o Confusion matrix

7. Dataset Balancing: Oversampling or synthetic
augmentation (e.g., SMOTE, GAN-based
generation) ensures equal representation of TB
and normal cases.

B. Lung Segmentation: Segmentation isolates lung

regions from the rest of the image to focus the model

on relevant areas. Models such as:

e U-Net

e Attention U-Net

e Improved U-Net (TB-UNet)

are used to extract the lung masks. The segmented

lung region is then fed into the classification model.

This step improves the accuracy of detecting subtle

TB lesions.

C. Optimized Deep Learning Model: A deep-

learning architecture (e.g., EfficientNet, ResNet,

DenseNet, MobileNet, or a hybrid CNN model) is

selected as the core feature extractor. Optimization

techniques include:

1. Hyperparameter Optimization: Bayesian
optimization or grid search is used to select the
best learning rate, batch size, number of epochs,
and regularization parameters.

2. Optimizer Tuning: Adaptive optimizers like
Adam, AdamW, or RMSProp are evaluated.

3. Learning-Rate Scheduling: Cyclical or step
decay schedules help improve convergence.

These metrics help compare the optimized model
with existing TB detection approaches.

G. Deployment and Visualization

The final model may include:

e Grad-CAM visualization for highlighting TB-
affected regions

e Probability scoring for screening severity

o User-friendly CAD interface for clinical
application

Experimental Results

The experimental results show that the proposed
optimized deep learning model achieves higher
accuracy, precision, recall, and F1-score compared
to traditional machine learning and baseline deep
learning methods. The reduction in loss and training
time indicates improved learning efficiency and
model stability. These results confirm that
combining effective preprocessing with optimized
deep learning techniques enhances the reliability and
performance of tuberculosis detection using chest X-
ray images.
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Fig. 2. Preprocessed Image

Fig. 3. Segmented Lung Mask

Fig. 4. Final Output with Detection

Table 1. Performance Comparison of Machine Learning Models

Model Accuracy Precision Recall F1-Score Training Time
(%) (%) (%) (%) (s)
Logistic Regression 88.40 87.07 86.48 86.76 6.20
Naive Bayes 84.73 82.37 83.17 82.77 2.40
Random Forest 92.65 91.47 91.97 91.71 15.49
SVM 93.09 92.57 92.37 92.47 18.29
KNN 89.18 88.27 87.87 87.98 7.60
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Table 2. Deep Learning Models Before Optimization
DL Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Epochs
1-D CNN 94.22 93.77 93.47 93.61 25
Bi-LSTM 95.70 95.17 95.07 95.11 30
CNN-BiLSTM 96.85 96.37 96.07 96.21 28
GRU 94.92 94.37 94.07 94.21 27
Table 3. Impact of Optimization Techniques
Model + Optimization Accuracy (%) Loss
CNN + Adam 95.17 0.1380
CNN + RMSProp 95.82 0.1120
Bi-LSTM + Nadam 96.57 0.1050
CNN-BIiLSTM + AdamW 97.42 0.0889
CNN-BILSTM + Bayesian Optimization 98.09 0.0640
Table 4. Overall Performance Summary
Metric Baseline Model Proposed Model
Accuracy (%) 96.85 98.09
F1-Score (%) 96.21 97.84
Recall (%) 96.07 97.77
Precision (%) 96.37 97.92
Training Time (min) 32.49 27.39
Loss 0.0889 0.0640
92 +
-§ 90 A
z
c
o
2 88
86
LogReg Naive Bayes Random Forest SVM KNN

Machine Learning Models

Fig. 5. Performance Comparison of ML Models using Accuracy
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Fig. 8. Overall Performance Summary Comparison

RESULTS AND DISCUSSIONS

The performance of the proposed tuberculosis (TB)
detection framework was evaluated using a series of
experiments, and the results are summarized in
Tables 1-6 and illustrated through accuracy-based
line graphs (Figures 5 - 8). Table 1 presents the
performance comparison of traditional machine
learning models using accuracy, precision, recall,
Fl-score, and training time. Among these models,
Support Vector Machine (SVM) achieved the
highest accuracy, followed by Random Forest, while
Naive Bayes showed comparatively lower
performance. This trend is also clearly visualized in
Figure 5, where SVM and Random Forest
demonstrate superior accuracy levels. These results
indicate that kernel-based and ensemble methods are
more effective than probabilistic models for TB

demonstrates the effect of different optimization
techniques on deep learning model performance. A
steady increase in accuracy is observed as advanced
optimization strategies are applied. The Bayesian
Optimization—based CNN-BiLSTM model achieved
the highest accuracy with the lowest loss value. This
improvement is clearly depicted in Figure 7, which
shows a continuous upward trend in accuracy from
standard optimizers (Adam, RMSProp) to Bayesian
optimization. These results highlight the importance
of hyperparameter tuning and optimization in
improving deep learning performance.

A direct comparison between traditional machine
learning models, baseline deep learning models, and
the proposed optimized framework is presented in
Table 4. The optimized BO-CNN-BiLSTM model
outperformed all benchmark models across
accuracy, precision, recall, and Fl-score. This

detection using chest X-ray features. confirms the effectiveness of integrating
preprocessing, segmentation, and optimization
The results of baseline deep learning models are techniques into a unified framework. The

shown in Table 2. The CNN-BiLSTM hybrid model
achieved the highest accuracy among all deep
learning models before optimization, outperforming
1-D CNN, Bi-LSTM, and GRU architectures. This
improvement is clearly observed in Figure 6, where
CNN-BiLSTM shows a noticeable peak in accuracy.
The results confirm that combining convolutional
feature extraction with sequence-based learning
enhances TB classification performance. Table 3

computational performance of the models is
reported. The proposed optimized framework
achieved reduced training time, lower memory
usage, and faster inference compared to the baseline
CNN-BiLSTM model. These improvements
indicate that the proposed method is not only
accurate but also computationally efficient, making
it suitable for real-world TB screening applications.
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The overall performance comparison between the
baseline and proposed models is summarized in
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