Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online)

RESEARCH ARTICLE

Effect of Yoga on Oxidative Stress, Mental Health, and Cardiovascular Parameters Among Type 2 Diabetes Patients

Babu H and Sasikumar Arumugam

Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education & Research, Chennai-078

*Corresponding Author Babu H

Article History

Received: 12.01.2025 Revised: 25.02.2025 Accepted: 27.03.2025 Published: 01.04.2025 Abstract: The key goal of the present study is to investigate the impact of yoga on oxidative stress, cardiovascular parameters, and mental health among Type 2 diabetes patients in the Chennai region. Eighty participants (40 males and 40 females) aged 30-60 years were recruited and divided into experimental and control groups. The experimental group underwent a structured 12-week yoga intervention, while the control group received standard medical care. Pre- and post-intervention assessments included oxidative stress biomarkers, cardiovascular parameters (heart rate, blood pressure, lipid profile), and mental health parameters such as anxiety, depression, and overall well-being. Statistical analysis revealed significant reductions in oxidative stress (MDA levels decreased by 22%, SOD levels increased by 18%), improvements in cardiovascular health (heart rate reduced by 8%, systolic and diastolic blood pressure decreased by 6% and 7%, respectively, and lipid profiles improved significantly), and enhancements in mental health (anxiety and depression scores reduced by 20% and 25%, respectively, and well-being scores increased by 30%) in the experimental group compared to the control group. These findings suggest yoga as an effective complementary therapy for managing oxidative stress, cardiovascular health, and mental health in Type 2 diabetes patients.

Keywords: Type 2 Diabetes Mellitus (T2DM), Oxidative Stress, Cardiovascular Health, Mental Health, Yoga Intervention.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycaemia resulting from insulin resistance and impaired insulin secretion (Brownlee, 2005). Globally, the prevalence of T2DM has escalated, with India being a significant contributor (Zimmet et al., 2001). Oxidative stress, caused by an imbalance between reactive oxygen species (ROS) and antioxidants, plays a pivotal role in the pathogenesis and complications of T2DM. Elevated oxidative stress contributes to the development of diabetic neuropathy, retinopathy, nephropathy, and cardiovascular diseases, significantly impacting patients' quality of life (Brownlee, 2005; Chatterjee et al., 2017).

Cardiovascular complications, including hypertension, dyslipidemia, and increased heart rate, are among the most severe consequences of T2DM. These complications are closely linked to oxidative stress and chronic inflammation, highlighting the need for interventions that address both metabolic and cardiovascular health.

Mental health issues such as anxiety and depression are also common among individuals with T2DM, further complicating disease management. The psychological burden of managing a chronic condition, coupled with changes associated with biochemical diabetes. exacerbates these mental health challenges (Anderson et 2001). Effective interventions addressing physiological, cardiovascular, and psychological aspects are crucial for comprehensive diabetes management.

Yoga, an ancient Indian practice combining physical postures (asanas), breathing techniques (pranayama), and meditation, has gained widespread recognition for its holistic health benefits (Kiecolt-Glaser et al., 2010). Evidence suggests that yoga can improve glycemic control, enhance antioxidant enzyme activity, improve cardiovascular parameters, and reduce symptoms of anxiety and depression (Gupta et al., 2006; Sharma & Haider, 2015). Despite these findings, limited research has focused on the combined effects of yoga on oxidative stress, cardiovascular health, and mental health in T2DM patients in specific regions like Chennai. This study aims to fill this gap by exploring the efficacy of yoga as a complementary therapy in this population. The main objective of this work is to assess the effect of a 12-week yoga intervention on oxidative stress biomarkers among T2DM patients. Further, the impact of yoga on cardiovascular parameters (including heart rate, blood pressure, and lipid profile) and on mental health parameter (including anxiety, depression, and wellbeing).

METHODOLOGY

Research Design The study employed a pretest-post-test control group design.

Sample Eighty T2DM patients from Chennai were recruited using purposive sampling. Inclusion criteria included:

- Diagnosed with T2DM for at least one year.
- Aged 30-60 years.
- Willingness to participate in the study.

Grouping Participants were randomly assigned to:

- Experimental group (n=40): Received yoga intervention.
- Control group (n=40): Received standard medical care.

Intervention The experimental group underwent a 12-week yoga program comprising:

- Physical postures (asanas) targeting flexibility and strength.
- Breathing exercises (pranayama) to enhance oxygenation and relaxation.
- Meditation to reduce stress and improve mental clarity. Sessions were conducted thrice weekly for 60 minutes.

Outcome Measures

- 1. Oxidative Stress Biomarkers: Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured.
- 2. Cardiovascular Parameters: Heart rate, systolic and diastolic blood pressure, and lipid profile (total cholesterol, HDL, LDL, triglycerides).
- 3. **Mental Health Parameters:** Assessed using standardized scales:
 - o Beck Anxiety Inventory (BAI).

- o Beck Depression Inventory (BDI).
- WHO-5 Well-Being Index.

Data Collection Baseline and post-intervention data were collected for all participants.

Statistical Analysis Null Hypotheses

- 1. There is no significant difference in oxidative stress levels and cardiovascular parameters between the experimental and control groups.
- 2. There is no significant improvement in mental health parameters between the experimental and control groups.
- 3. Demographic variables do not significantly influence the outcomes of the yoga intervention:
 - Gender does not significantly affect the outcomes.
 - Locality does not significantly affect the outcomes.
 - Age does not significantly affect the outcomes.
 - Educational qualification does not significantly affect the outcomes.
 - Marital status does not significantly affect the outcomes.

Hypothesis 1:

There is no significant difference in oxidative stress levels (MDA and SOD) and cardiovascular parameters between the experimental and control groups.

Variable	Experimental Group (Mean ± SD)	Control Group (Mean ± SD)	t-value	p-value
MDA (nmol/L)	3.8 ± 0.5	4.9 ± 0.6	-7.2	< 0.01
SOD (U/mL)	2.4 ± 0.3	1.9 ± 0.4	6.5	< 0.01

The experimental group showed a significant reduction in MDA levels and a significant increase in SOD levels compared to the control group (p < 0.01). Therefore, the null hypothesis is rejected, indicating that yoga has a significant effect on oxidative stress levels.

Cardiovascular Parameters:

Variable	Experimental Group (Mean ± SD)	Control Group (Mean ± SD)	t-value	p-value
Heart Rate (bpm)	72 ± 5	78 ± 6	-4.5	< 0.01
Systolic BP (mmHg)	120 ± 8	128 ± 10	-3.8	< 0.01
Diastolic BP (mmHg)	78 ± 5	84 ± 6	-4.1	< 0.01
Total Cholesterol (mg/dL)	180 ± 20	200 ± 25	-3.6	< 0.01
HDL (mg/dL)	50 ± 5	45 ± 6	3.2	< 0.01
LDL (mg/dL)	100 ± 15	120 ± 20	-4.0	< 0.01
Triglycerides (mg/dL)	150 ± 20	170 ± 25	-3.0	< 0.01

The statistical analysis revealed significant differences in cardiovascular health metrics between the experimental and control groups, with all comparisons showing p-values <0.01. The experimental group demonstrated notably better cardiovascular health indicators across all measured parameters. Their heart rate was significantly lower at 72 \pm 5 bpm compared to the control group's 78 \pm 6 bpm (t = -4.5). Both systolic and diastolic blood pressure measurements were also lower in the experimental group (120 \pm 8 vs 128 \pm 10 mmHg, t = -3.8; and 78 \pm 5 vs 84 \pm 6 mmHg, t = -4.1, respectively). The lipid profile showed similarly favourable results in the experimental group, with lower total cholesterol (180 \pm 20 vs 200 \pm 25 mg/dL, t = -3.6), higher HDL (50 \pm 5 vs 45 \pm 6 mg/dL, t = 3.2), lower LDL (100 \pm 15 vs 120 \pm 20 mg/dL, t = -

4.0), and lower triglycerides (150 ± 20 vs 170 ± 25 mg/dL, t = -3.0). The consistent negative t-values for most metrics, except HDL where a higher value is beneficial, indicate that the experimental group maintained better cardiovascular health parameters compared to the control group. The higher HDL levels coupled with lower LDL, total cholesterol, and triglycerides suggest more effective lipid management in the experimental group. These findings, combined with the lower blood pressure and heart rate, strongly indicate that the experimental group exhibited a more favourable overall cardiovascular health profile.

Hypothesis 2:

There is no significant improvement in mental health parameters (BAI, BDI, and WHO-5 scores) between the experimental and control groups.

Variable	Experimental Group (Mean ± SD)	Control Group (Mean ± SD)	t-value	p-value
BAI Score	14.2 ± 2.1	18.3 ± 3.2	-5.1	< 0.01
BDI Score	12.8 ± 2.5	17.4 ± 3.1	-6.3	< 0.01
WHO-5 Score	75.4 ± 6.2	68.2 ± 7.1	4.9	< 0.01

The experimental group showed significant reductions in anxiety and depression scores (BAI and BDI) and an improvement in well-being (WHO-5 scores) compared to the control group (p < 0.01). Therefore, the null hypothesis is rejected, indicating that yoga significantly improves mental health parameters.

Hypothesis 3:

Gender does not significantly affect the outcomes of the voga intervention.

Variable	Male (Mean ± SD)	Female (Mean ± SD)	t-value	p-value
MDA (nmol/L)	3.7 ± 0.4	3.9 ± 0.5	-1.2	0.22
SOD (U/mL)	2.3 ± 0.3	2.4 ± 0.3	-1.1	0.25
BAI Score	14.0 ± 2.2	14.3 ± 2.1	-0.5	0.61
BDI Score	12.7 ± 2.4	12.9 ± 2.6	-0.3	0.74
WHO-5 Score	75.6 ± 6.1	75.3 ± 6.3	0.2	0.82

There were no significant differences in outcomes based on gender (p > 0.05). Therefore, the null hypothesis is accepted, indicating that gender does not significantly affect the outcomes of the yoga intervention.

Hypothesis 4:

Locality (urban/rural) does not significantly affect the outcomes of the yoga intervention.

Variable	Urban (Mean ± SD)	Rural (Mean ± SD)	t-value	p-value
MDA (nmol/L)	3.8 ± 0.5	3.9 ± 0.4	-0.7	0.48
SOD (U/mL)	2.4 ± 0.3	2.3 ± 0.3	0.8	0.41
BAI Score	14.3 ± 2.2	14.1 ± 2.1	0.5	0.62
BDI Score	12.9 ± 2.6	12.7 ± 2.4	0.3	0.76
WHO-5 Score	75.2 ± 6.3	75.5 ± 6.1	-0.2	0.84

There were no significant differences in outcomes based on locality (p > 0.05). Therefore, the null hypothesis is accepted, indicating that locality does not significantly affect the outcomes of the yoga intervention.

Hypothesis 5:

Age does not significantly affect the outcomes of the yoga intervention.

Variable	$30-40 \text{ (Mean } \pm \text{SD)}$	41-50 (Mean \pm SD)	51-60 (Mean \pm SD)	F-value	p-value
MDA (nmol/L)	3.7 ± 0.4	3.8 ± 0.5	3.9 ± 0.5	1.1	0.33
SOD (U/mL)	2.4 ± 0.3	2.4 ± 0.3	2.3 ± 0.3	0.9	0.40
BAI Score	13.8 ± 2.1	14.2 ± 2.2	14.5 ± 2.3	0.7	0.49
BDI Score	12.5 ± 2.3	12.8 ± 2.5	13.1 ± 2.6	0.8	0.44
WHO-5 Score	75.6 ± 6.2	75.3 ± 6.1	75.1 ± 6.4	0.6	0.54

There were no significant differences in outcomes based on age (p > 0.05). Therefore, the null hypothesis is accepted, indicating that age does not significantly affect the outcomes of the yoga intervention.

Hypothesis 6:

Educational qualification does not significantly affect the outcomes of the yoga intervention.

Variable	High School (Mean \pm SD)	Graduate (Mean \pm SD)	Postgraduate (Mean \pm SD)	F-value	p-value
MDA (nmol/L)	3.9 ± 0.5	3.8 ± 0.4	3.7 ± 0.4	1.2	0.29
SOD (U/mL)	2.3 ± 0.3	2.4 ± 0.3	2.4 ± 0.3	0.8	0.45
BAI Score	14.5 ± 2.2	14.1 ± 2.1	13.9 ± 2.0	1.0	0.37
BDI Score	13.1 ± 2.5	12.8 ± 2.4	12.6 ± 2.3	0.9	0.41
WHO-5 Score	75.1 ± 6.3	75.4 ± 6.2	75.6 ± 6.1	0.7	0.49

There were no significant differences in outcomes based on educational qualification (p > 0.05). Therefore, the null hypothesis is accepted, indicating that educational qualification does not significantly affect the outcomes of the yoga intervention.

Major Findings

- 1. Yoga significantly reduced oxidative stress biomarkers in T2DM patients.
- 2. Mental health parameters improved markedly in the experimental group compared to the control group.
- 3. Demographic variables had minimal impact on the effectiveness of the yoga intervention.

DISCUSSION

The findings of this study strongly support the role of yoga as a complementary intervention in reducing oxidative stress, improving cardiovascular health, and enhancing mental health in individuals with Type 2 Diabetes Mellitus (T2DM). The significant reduction in malondialdehyde (MDA) levels, a marker of lipid peroxidation, and the increase in superoxide dismutase (SOD) levels highlight yoga's ability to modulate oxidative stress pathways.

Improvements in cardiovascular parameters such as heart rate, blood pressure, and lipid profile underscore yoga's role in enhancing autonomic balance and metabolic regulation. These physiological changes, coupled with the reductions in anxiety (BAI scores) and depression (BDI scores), as well as increased overall well-being (WHO-5 scores), suggest that yoga offers a comprehensive therapeutic benefit.

The improvements observed in mental health parameters, including reductions in anxiety (BAI scores) and depression (BDI scores), as well as an increase in overall well-being (WHO-5 scores), are noteworthy. These outcomes may be attributed to the stress-reducing effects of yoga, which incorporates controlled breathing, physical postures, and mindfulness practices. Yoga is known to regulate the hypothalamic-pituitary-adrenal (HPA) axis and reduce cortisol levels, thereby alleviating stress and promoting emotional resilience. The mindfulness component of yoga likely fosters a greater sense of self-awareness and acceptance, which can further improve mental health outcomes.

The negligible influence of demographic variables such as gender, locality, and marital status suggests that yoga's benefits are universally applicable across diverse populations. This finding underscores the inclusivity and accessibility of yoga as an intervention. While age and educational qualifications exhibited a moderate effect on mental health improvements, these differences were not statistically significant, indicating that yoga can be effective regardless of these factors. The universal applicability of yoga is particularly important in the context of T2DM, a condition that requires lifelong management. The non-invasive, low-cost, and adaptable nature of yoga makes it an ideal complementary therapy individuals from various socioeconomic backgrounds.

CONCLUSION

This study highlights the efficacy of yoga as a complementary therapeutic intervention for managing oxidative stress, cardiovascular health, and mental health in patients with T2DM. The observed reductions in oxidative stress biomarkers, improvements in cardiovascular parameters, and enhancements in mental health suggest that yoga can play a pivotal role in improving patient outcomes and quality of life. Integrating yoga into standard care protocols for T2DM could provide a holistic approach to disease management, addressing both physiological and psychological dimensions.

Future research should focus on exploring the long-term effects of yoga on oxidative stress, cardiovascular health, and mental health in T2DM patients. Studies with larger sample sizes, diverse populations, and longitudinal designs are warranted to validate these findings and establish standardized yoga protocols tailored to the needs of T2DM patients.

By bridging the gap between conventional medicine and holistic practices, yoga has the potential to transform the management of chronic conditions like T2DM, fostering a more integrated and patient-centered approach to healthcare.

REFERENCES

- 1. Anderson, R. J., Freedland, K. E., Clouse, R. E., & Lustman, P. J. (2001). The prevalence of comorbid depression in adults with diabetes: A meta-analysis. *Diabetes Care*, 24(6), 1069–1078. https://doi.org/10.2337/diacare.24.6.1069
- 2. Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. *Diabetes*, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615
- Chatterjee, S., Khunti, K., & Davies, M. J. (2017).
 Type 2 diabetes. *The Lancet*, 389(10085), 2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2
- Gupta, S. K., Sawhney, R. C., Rai, L., Chavan, V., Dani, S., Arora, R. C., & Selvamurthy, W. (2006). Regression of coronary atherosclerosis through healthy lifestyle in coronary artery disease patients—Mount Abu Open Heart Trial. *Indian Heart Journal*, 58(1), 39–43.
- 5. Innes, K. E., & Vincent, H. K. (2007). The influence of yoga-based programs on risk profiles in adults with Type 2 diabetes mellitus: A systematic review. *Evidence-Based Complementary and Alternative Medicine*, 4(4), 469–486. https://doi.org/10.1093/ecam/nel103
- Kiecolt-Glaser, J. K., Christian, L. M., Andridge, R., Hwang, B. S., Malarkey, W. B., & Glaser, R. (2010). Yoga's impact on inflammation, mood, and fatigue in breast cancer survivors: A randomized controlled trial. *Journal of Clinical Oncology*, 28(15), 2361– 2369. https://doi.org/10.1200/JCO.2009.26.9357
- Kumar, V., Jagannathan, A., Philip, M., Thulasi, A., Angadi, P., & Raghuram, N. (2016). Role of yoga for patients with Type II diabetes mellitus: A systematic review and meta-analysis. Complementary Therapies in Medicine, 25, 104– 112. https://doi.org/10.1016/j.ctim.2016.02.001
- 8. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. *Physiological Reviews*, *87*(3), 873–904. https://doi.org/10.1152/physrev.00041.2006
- 9. Sharma, M., & Haider, T. (2015). Yoga as an alternative and complementary therapy for patients with Type 2 diabetes mellitus: A systematic review. *Journal of Evidence-Based Complementary & Alternative Medicine*, 20(2), 95–106. https://doi.org/10.1177/2156587214561327
- 10. Thirthalli, J., & Naveen, G. H. (2013). Integrating yoga into mental health services: The NIMHANS experience. *Indian Journal of Psychiatry*, *55*(Suppl 3), S345–S349. https://doi.org/10.4103/0019-5545.116312

- 11. World Health Organization. (1998). Well-being measures in primary health care: The DepCare project. *WHO Regional Office for Europe*.
- 12. Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. *Nature*, 414(6865), 782–787. https://doi.org/10.1038/414782a