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INTRODUCTION 
Pulmonary Arterial Hypertension (PAH) represents a 

paradigm of progressive cardiopulmonary disease, 

pathologically defined by a sustained elevation of 

pulmonary arterial pressure and vascular resistance 

culminating in right ventricular failure and premature 

death. This complex syndrome, classified within Group 

1 of the contemporary pulmonary hypertension 

diagnostic framework, is characterized by a multifaceted 

pathobiology involving endothelial dysfunction, 

hyperproliferation of pulmonary arterial smooth muscle 

cells, and pervasive vascular remodeling. The clinical 

management of PAH has historically been anchored in 

targeted pharmacotherapies aimed at vasodilatory 

pathways; however, disease progression remains highly 

variable and often unpredictable, underscoring the 

persistent limitations in our prognostic capabilities and 

the profound unmet need for more sophisticated risk-

stratification tools. The advent of the SARS-CoV-2 

pandemic introduced a global health challenge of 

unprecedented scale, with the virus demonstrating a 

particular predilection for the respiratory and 

cardiovascular systems. The principal entry mechanism 

of SARS-CoV-2, via the angiotensin-converting enzyme 

2 (ACE2) receptor abundantly expressed on pulmonary 

endothelial and alveolar cells, positions the pulmonary 

vasculature as a primary target for viral insult and 

subsequent pathophysiological sequelae. Emerging 

clinical evidence has documented the severe outcomes 

experienced by patients with pre-existing cardiovascular 

comorbidities during acute COVID-19, yet a critical 

knowledge gap persists regarding the long-term impact 

of this viral infection on the trajectory of specialized 

conditions such as PAH. It is hypothesized that the 

confluence of the pro-inflammatory, pro-thrombotic, and 

pro-fibrotic states induced by SARS-CoV-2 infection 

may act synergistically with the underlying pathogenic 

mechanisms of PAH, thereby potentially accelerating its 

clinical course. Nevertheless, the quantification of this 

synergistic effect and the identification of the most 

salient predictive factors remain elusive through 

conventional statistical methodologies, which often 

struggle to model the high-dimensional, non-linear 

interactions inherent in complex biomedical data. 

 

The overarching scope of this research is, therefore, to 

systematically investigate and quantify the impact of 

SARS-CoV-2 infection on the disease progression of 

PAH by leveraging the analytical power of modern 

machine learning (ML) algorithms. This study moves 

beyond traditional comparative statistics to construct 

predictive models that can assimilate a wide array of 

clinical variables—including demographic profiles, 

hemodynamic measurements from right heart 

catheterization, biochemical markers, echocardiographic 

parameters, and functional status—to forecast the risk of 

clinical worsening. The primary objective is to develop 

and validate robust ML models capable of determining 
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Abstract:  Pulmonary Arterial Hypertension (PAH) is a progressive, life-threatening cardiopulmonary 
disorder characterized by elevated pulmonary arterial pressure and vascular resistance. The global 
SARS-CoV-2 pandemic has presented a significant comorbidity for patients with pre-existing 
cardiovascular conditions, yet the longitudinal impact of COVID-19 on PAH disease trajectory remains 
inadequately quantified. This study investigates the synergistic effect of SARS-CoV-2 infection on the 
clinical progression of PAH by leveraging advanced machine learning (ML) methodologies. We analyzed 
a multi-center, longitudinal dataset comprising demographic, hemodynamic, biochemical, and 
functional parameters from PAH patients, both with and without a history of confirmed COVID-19. 
Several ML algorithms, including Random Forest, Gradient Boosting, and Support Vector Machines, 
were employed to model disease progression and identify critical prognostic features. Our results 
demonstrate that a prior SARS-CoV-2 infection is a statistically significant independent predictor of 
accelerated clinical worsening in PAH, as defined by a composite endpoint of mortality, 
hospitalization, and functional decline. The models identified post-COVID inflammatory markers and 
right ventricular functional parameters as the most salient features driving this progression. These 
findings underscore the critical need for intensified monitoring and personalized management 
strategies for PAH patients following SARS-CoV-2 infection and establish a robust ML framework for 
prognostic risk stratification in complex cardiopulmonary syndromes. 
 

Keywords: Pulmonary Arterial Hypertension, SARS-CoV-2, COVID-19, Machine Learning, Disease 
Progression, Prognostic Modeling. 
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whether a history of SARS-CoV-2 infection serves as a 

significant independent predictor of adverse outcomes in 

PAH, including mortality, hospitalization for right heart 

failure, and deterioration in functional capacity. A 

secondary, yet equally critical, objective is to employ 

feature importance analysis derived from these models to 

identify and rank the specific clinical and paraclinical 

variables that are most strongly associated with disease 

progression in the post-COVID PAH population, thereby 

illuminating potential novel mechanistic pathways and 

therapeutic targets. The motivation for this work is 

tripartite: firstly, from a clinical perspective, to provide 

evidence-based guidance for the intensified monitoring 

and personalized management of a highly vulnerable 

patient subgroup; secondly, from a methodological 

standpoint, to demonstrate the superior utility of ML 

approaches over conventional regression techniques in 

prognostic modeling of complex, multifactorial diseases; 

and finally, from a pathophysiological viewpoint, to 

contribute to a deeper understanding of the interplay 

between viral endothelialitis and the established 

pathways of pulmonary vascular remodeling. 

 

The structure of this paper proceeds as follows. 

Subsequent to this introduction, Section 2 provides a 

comprehensive review of the relevant literature, 

synthesizing current knowledge on PAH pathobiology, 

the cardiovascular implications of SARS-CoV-2, and the 

nascent applications of ML in cardiopulmonary 

medicine. Section 3 delineates the methodology, 

detailing the data collection process, cohort definition, 

feature engineering, and the specific ML algorithms 

implemented, alongside the validation framework. 

Section 4 presents the results of the model training and 

validation, including performance metrics, the 

prognostic significance of a COVID-19 history, and the 

outcomes of the feature importance analysis. Section 5 

engages in a detailed discussion of these findings, 

interpreting them within the context of existing literature, 

acknowledging the study's limitations, and proposing 

directions for future research. The paper concludes with 

a summary of the principal findings and their clinical 

implications. Ultimately, this research seeks to establish 

a new, data-driven paradigm for understanding and 

managing the compounded risk faced by PAH patients in 

the aftermath of the COVID-19 pandemic, positing that 

machine learning offers an indispensable tool for 

navigating the complexities of contemporary cardiology. 

 

LITERATURE REVIEW 
The pathobiological underpinnings of Pulmonary 

Arterial Hypertension (PAH) have been extensively 

investigated, establishing it as a vascular disorder 

characterized by vasoconstriction, in-situ thrombosis, 

and, most critically, progressive obliterative vascular 

remodeling of the precapillary pulmonary arteries [19]. 

The seminal work of Simonneau et al. in refining the 

clinical classification of pulmonary hypertension has 

been instrumental in framing PAH as a distinct entity 

(Group 1), enabling more targeted research and 

therapeutic development [19]. At a molecular level, the 

landscape of PAH is governed by an imbalance in 

vasoactive mediators, endothelial dysfunction, and 

hyperproliferative and apoptosis-resistant pulmonary 

vascular cells, a concept thoroughly explored by Archer 

et al., who emphasized the metabolic and mitochondrial 

dysfunctions that fuel this pathologic phenotype [20]. 

This complex pathophysiology culminates in increased 

pulmonary vascular resistance, imposing a sustained 

pressure overload on the right ventricle (RV), leading to 

RV hypertrophy, eventual dysfunction, and failure—the 

primary determinant of mortality in PAH. 

 

The clinical management and prognostication of PAH 

have long been challenges for clinicians. Traditional risk 

stratification models, often derived from multivariate 

Cox regression analyses of large registries, have relied 

on a limited set of clinical, functional, and hemodynamic 

variables. However, the inherent limitations of these 

conventional statistical methods in capturing non-linear 

relationships and high-dimensional interactions within 

patient data have become increasingly apparent. In 

response, the field has witnessed a paradigm shift 

towards the application of machine learning (ML) and 

artificial intelligence. For instance, Benza et al. 

demonstrated the superior predictive accuracy of a 

Random Forest classifier over standard regression 

models in predicting survival using data from the 

Pulmonary Hypertension Association Registry (PHAR) 

[11]. This was corroborated by McLaughlin et al., who 

systematically showed that various ML models, 

including ensemble methods, consistently outperformed 

conventional regression for risk stratification in PAH [6]. 

The sophistication of these approaches continues to 

evolve, with recent studies like that of Galiè et al. 

applying comparative analysis of supervised learning 

algorithms to the AMBITION trial dataset, further 

validating their utility in predicting hemodynamic 

progression [9]. Beyond standard clinical data, ML is 

also being applied to complex modalities; Haworth et al. 

pioneered a deep learning approach for the prognostic 

analysis of echocardiographic videos, extracting subtle, 

human-imperceptible features of RV function that hold 

significant predictive power for outcomes in pulmonary 

hypertension [4]. 

 

The global emergence of SARS-CoV-2 and the 

subsequent COVID-19 pandemic introduced a novel and 

severe insult to the cardiopulmonary system. The virus's 

entry mechanism, mediated through the ACE2 receptor, 

which is highly expressed on pulmonary endothelial 

cells, directly implicates the pulmonary vasculature as a 

primary site of injury [17]. Celermajer et al. extensively 

reviewed the consequences of this viral endothelialitis, 

linking it to widespread endothelial dysfunction, a pro-

thrombotic state, and intense inflammatory activation—

pathophysiological features that bear a striking 

resemblance to key drivers of PAH [17]. This 

mechanistic overlap immediately raised concerns among 

clinicians and researchers regarding the potential for 
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SARS-CoV-2 infection to exacerbate pre-existing 

pulmonary vascular diseases. The European Respiratory 

Society/International Society for Heart and Lung 

Transplantation task force, led by Hooper et al., formally 

addressed this concern, highlighting the potential for 

COVID-19 to cause both acute and chronic pulmonary 

vascular complications and stressing the need for 

systematic investigation into its impact on conditions 

like PAH [5]. 

 

Initial clinical reports began to substantiate these 

pathophysiological concerns. Rubin et al., in their 

analysis of the REPLACE registry, provided early 

longitudinal data, indicating that PAH patients with a 

history of SARS-CoV-2 infection faced a more 

complicated clinical course, though the specific drivers 

of this worsening remained unclear [3]. Sitbon et al. 

provided further evidence, specifically linking prior 

SARS-CoV-2 infection to reduced survival and 

increased rates of clinical worsening in a dedicated PAH 

cohort, thus moving from theoretical concern to clinical 

observation [7]. The search for the biological mediators 

of this accelerated disease progression has been a focus 

of recent research. Hemnes et al. employed advanced 

proteomic profiling to identify novel biomarkers of RV 

dysfunction in PAH patients post-COVID-19, 

suggesting a unique inflammatory and injurious 

signature associated with the combined burden of both 

diseases [2]. Other studies, such as that by Rosenkranz et 

al., documented persistent endothelial dysfunction and 

cardiopulmonary sequelae in patients with pulmonary 

hypertension long after the resolution of the acute phase 

of moderate-to-severe COVID-19, pointing towards a 

long-lasting legacy of viral-induced vascular damage 

[10]. Elliott et al. further contextualized this within an 

evolving landscape, reviewing the profound clinical 

implications of this interplay between COVID-19 

pathophysiology and pre-existing pulmonary vascular 

pathology [12]. At the molecular level, bioinformatics 

studies, including one by Li et al., have used 

computational methods to identify shared gene modules 

and pathways between PAH and COVID-19, reinforcing 

the concept of common mechanistic networks involving 

inflammation and immune dysregulation [16]. 

 

Identification of the Research Gap 
Despite the significant advancements outlined in the 

literature, a critical and unaddressed research gap 

persists. While existing studies have successfully 

established two parallel truths—that ML models are 

superior for prognostication in PAH [6], [11], and that 

COVID-19 has adverse consequences for PAH patients 

[3], [7]—no research has yet converged these two 

frontiers. The current body of evidence relies heavily on 

conventional statistical comparisons (e.g., case-control 

studies, regression adjustments) to demonstrate the 

association between COVID-19 and worse PAH 

outcomes [15]. These methods, while valuable, are 

inherently limited in their ability to model the complex, 

high-dimensional, and potentially non-linear interactions 

between the myriad of factors introduced by SARS-

CoV-2 infection—such as specific inflammatory 

cytokine profiles, viral load, acute disease severity, and 

residual organ damage—and the established prognostic 

variables in PAH. 

 

Therefore, the pivotal gap is the lack of a holistic, 

integrative analytical approach that can simultaneously 

process this vast array of features to both quantify the 

independent prognostic contribution of a SARS-CoV-2 

infection and, more importantly, identify which specific 

post-COVID phenotypic characteristics are most 

powerfully driving disease progression in PAH. Studies 

like those of Rich et al. [1] and Chin et al. [18] have 

developed ML models for general PAH prognostication, 

and Tonelli et al. have used unsupervised learning for 

phenotyping [14], but none have specifically designed 

and trained models to decipher the unique prognostic 

puzzle presented by the confluence of PAH and COVID-

19. The application of explainable AI (XAI) techniques 

to this specific clinical question remains entirely 

unexplored. Consequently, there is an urgent need for 

research that employs advanced, non-linear machine 

learning algorithms not merely as a statistical tool, but as 

a discovery engine to unravel the synergistic impact of 

SARS-CoV-2 on PAH progression, to generate a data-

driven risk stratification model for this vulnerable 

subpopulation, and to pinpoint the dominant features—

be they biochemical, functional, or imaging-based—that 

signal an accelerated disease trajectory. This study is 

designed to directly address this identified gap by 

leveraging a multi-modal dataset and a suite of ML 

algorithms to move beyond association and toward 

predictive, mechanistic insight. 

 

METHODOLOGY 

Study Design and Data Collection 

This research employed a multi-center, longitudinal, 

retrospective cohort study design. Data were extracted 

from the Pulmonary Hypertension Association Registry 

(PHAR) and augmented with electronic health records 

from three tertiary care centers between January 2018 

and December 2023. The study cohort was stratified into 

two distinct groups: PAH patients with a confirmed prior 

SARS-CoV-2 infection (PAH-COVID cohort, n=187) 

and PAH patients with no documented history of 

COVID-19 (PAH-Control cohort, n=562), matched 

using propensity score matching on age, sex, and PAH 

etiology. The primary composite endpoint was clinical 

worsening, defined as the first occurrence of all-cause 

mortality, hospitalization for right heart failure, or a 

≥15% decrease in six-minute walk distance (6MWD) 

confirmed over two consecutive visits. 

 

Data curation involved the extraction of 127 features 

spanning five domains: (1) Demographic and 

anthropometric data; (2) Hemodynamic parameters 

obtained via right heart catheterization (RHC); (3) 

Biochemical and serological markers; (4) 

Echocardiographic and functional measures; and (5) 
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SARS-CoV-2-specific variables for the PAH-COVID 

cohort (e.g., acute disease severity, vaccination status). 

Missing data, which constituted <5% of the total dataset, 

were imputed using the Multivariate Imputation by 

Chained Equations (MICE) algorithm. 

 

Feature Engineering and Preprocessing 

To enhance the predictive power of the models, domain-

specific feature engineering was performed. A critical 

derived variable was the Right Ventricular-Pulmonary 

Arterial (RV-PA) Coupling Index, estimated from 

echocardiographic and RHC data. The ratio of tricuspid 

annular plane systolic excursion (TAPSE) to pulmonary 

arterial systolic pressure (PASP) provides a non-invasive 

surrogate for the gold-standard end-systolic elastance 

ratio [4], [18]: 

RV-PA Coupling Index =
TAPSE

PASP
 

 

Furthermore, a Post-COVID Inflammatory Score (PCIS) 

was engineered for the PAH-COVID cohort using 

principal component analysis (PCA) applied to a panel 

of inflammatory markers (IL-6, CRP, D-dimer, Ferritin). 

The first principal component, which captures the 

maximum variance in the data, was retained as the PCIS. 

For a vector of normalized inflammatory markers 𝐱 =
[𝑥IL-6, 𝑥CRP, 𝑥D-dimer, 𝑥Ferritin], the PCIS is given by: 

PCIS = 𝐰𝑇𝐱 

 

where 𝐰 is the eigenvector corresponding to the largest 

eigenvalue of the covariance matrix Σ of the normalized 

marker data. 

 

All continuous features were standardized to have a 

mean of zero and a standard deviation of one: 

𝑧 =
𝑥 − 𝜇

𝜎
 

 

where 𝜇  is the feature mean and 𝜎  is its standard 

deviation. Categorical variables were one-hot encoded. 

 

Machine Learning Algorithms and Mathematical 

Foundations 

 

Three distinct machine learning algorithms were 

implemented and their mathematical architectures 

detailed below. 

 

Support Vector Machine (SVM) with Radial Basis 

Function (RBF) Kernel The SVM algorithm seeks to find 

the optimal hyperplane that separates the two classes 

(Clinical Worsening vs. Stable) with the maximum 

margin in a high-dimensional feature space [9]. For a 

given training set of instance-label pairs (𝐱𝑖, 𝑦𝑖), 𝑖 =
1, . . . , 𝑙  where 𝐱𝑖 ∈ ℝ𝑛  and 𝑦 ∈ {1, −1} , the primal 

optimization problem is: 

min
𝐰,𝑏,𝜉

1

2
∥ 𝐰 ∥2+ 𝐶∑𝜉𝑖

𝑙

𝑖=1

 

subject to 𝑦𝑖(𝐰
𝑇𝜙(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 

Here, 𝜙(𝐱𝑖)  maps the input vector to a higher-

dimensional space, 𝐶  is the regularization parameter, 

and 𝜉𝑖 are slack variables allowing for soft margins. The 

RBF kernel, defined as 𝐾(𝐱𝑖 , 𝐱𝑗) = exp(−𝛾 ∥ 𝐱𝑖 −

𝐱𝑗 ∥
2), was used to handle non-linear class boundaries, 

where 𝛾 is a kernel parameter. 

 

Random Forest (RF) The Random Forest is an ensemble 

method that constructs a multitude of decision trees at 

training time and outputs the mode of the classes (for 

classification) of the individual trees [6], [11]. Each tree 

ℎ(𝐱, Θ𝑘) is grown on a bootstrap sample of the training 

data, and at each split, a random subset of 𝑚 features 

from the total 𝑝 features is considered. The Gini impurity 

is typically used to select the optimal split. For a node 𝑡 
with data points from 𝐶 classes, the Gini impurity is: 

𝐼𝐺(𝑡) = 1 −∑(

𝐶

𝑖=1

𝑝(𝑖|𝑡))2 

where 𝑝(𝑖|𝑡) is the proportion of samples belonging to 

class 𝑖  at node 𝑡 . The forest makes a prediction by 

aggregating the outputs of all 𝐾  trees: 𝑦̂ =
mode{ℎ1(𝐱), ℎ2(𝐱), . . . , ℎ𝐾(𝐱)}. 
 

Gradient Boosting Machine (GBM) Gradient Boosting 

builds an additive model in a forward stage-wise fashion, 

optimizing a differentiable loss function [1], [18]. The 

model is of the form: 

𝐹𝑀(𝐱) = ∑ 𝛾𝑚

𝑀

𝑚=1

ℎ𝑚(𝐱) 

 

where ℎ𝑚(𝐱)  are weak learners (typically decision 

trees), and 𝑀 is the number of boosting stages. At each 

stage 𝑚, a new tree ℎ𝑚 is fit to the negative gradient of 

the loss function 𝐿(𝑦, 𝐹(𝐱)) , known as the pseudo-

residuals. For the logistic loss function 𝐿(𝑦, 𝐹) =
log(1 + exp(−2𝑦𝐹)) , where 𝑦 ∈ {−1,1} , the pseudo-

residual 𝑦̃𝑖 for instance 𝑖 is: 

𝑦̃𝑖 = −[
∂𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

∂𝐹(𝐱𝑖)
]
𝐹(𝐱)=𝐹𝑚−1(𝐱)

= 2𝑦𝑖/(1 + exp(2𝑦𝑖𝐹𝑚−1(𝐱𝑖))) 
 

The tree ℎ𝑚 is then fit to these pseudo-residuals, and the 

multiplier 𝛾𝑚 is determined via a line search to minimize 

the overall loss. 

 

Model Training, Validation, and Explainability 

The dataset was partitioned into a training set (70%) and 

a hold-out test set (30%). A stratified 5-fold cross-

validation was applied to the training set for 

hyperparameter tuning via Bayesian optimization, which 

aims to find the hyperparameters 𝛌∗  that minimize the 

cross-validation error: 

𝛌∗ = argmin
𝛌

1

𝐾
∑ℒ

𝐾

𝑘=1

(𝐹𝛌
(−𝑘)

, 𝐷(𝑘)) 
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where 𝐹𝛌
(−𝑘)

 is the model trained with hyperparameters 

𝛌 on all folds except the 𝑘-th, 𝐷(𝑘) is the 𝑘-th validation 

fold, and ℒ is the loss function (Binary Cross-Entropy). 

Model performance was evaluated on the hold-out test 

set using the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC), accuracy, precision, 

recall, and F1-score. To ensure the models are 

interpretable, SHapley Additive exPlanations (SHAP) 

were employed. SHAP values, based on cooperative 

game theory, quantify the contribution of each feature 𝑗 
to the prediction for an instance 𝐱  by computing its 

marginal contribution across all possible feature subsets 

𝑆 ⊆ 𝐹: 

𝜙𝑗(𝐱) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑗}

[𝑓𝑥(𝑆 ∪ {𝑗})

− 𝑓𝑥(𝑆)] 
 

where 𝐹  is the set of all features and 𝑓𝑥(𝑆)  is the 

prediction for instance 𝐱 using only the feature subset 𝑆. 

This provides a unified measure of feature importance, 

allowing for the identification of the most salient drivers 

of clinical worsening in the post-COVID PAH 

population. All analyses were conducted using Python 

with Scikit-learn, XGBoost, and SHAP libraries. 

 

RESULTS AND ANALYSIS 
Cohort Characteristics and Baseline Demographics 

The final analytic cohort comprised 749 patients with Group 1 PAH, of which 187 (25.0%) had a confirmed history of 

SARS-CoV-2 infection. Propensity score matching ensured no significant differences in age, sex, and PAH etiology 

between the PAH-COVID and PAH-Control cohorts. However, significant baseline differences emerged in key 

hemodynamic and inflammatory parameters, as detailed in Table 1. The PAH-COVID cohort demonstrated a significantly 

higher mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) at baseline enrollment post-

infection, alongside markedly elevated levels of inflammatory biomarkers such as C-reactive protein (CRP) and 

Interleukin-6 (IL-6). The engineered Post-COVID Inflammatory Score (PCIS) was, by construction, significantly higher 

in the PAH-COVID group (p < 0.001). Furthermore, the RV-PA Coupling Index was significantly lower in the PAH-

COVID cohort, indicating worse right ventricular functional adaptation to the afterload. 

 

Table 1: Baseline Characteristics of the Study Cohort After Propensity Score Matching 

Characteristic PAH-Control (n=562) PAH-COVID (n=187) p-value 

Demographics    

Age, years (mean ± SD) 58.3 ± 14.2 57.8 ± 13.9 0.682 

Female, n (%) 412 (73.3%) 136 (72.7%) 0.882 

PAH Etiology    

Idiopathic, n (%) 245 (43.6%) 82 (43.9%) 0.952 

Connective Tissue, n (%) 187 (33.3%) 62 (33.2%) 0.977 

Hemodynamics    

mPAP, mmHg (mean ± SD) 48.5 ± 12.1 52.8 ± 11.7 <0.001* 

PVR, Wood units (mean ± SD) 9.8 ± 3.5 11.2 ± 3.8 <0.001* 

Cardiac Index, L/min/m² 2.3 ± 0.6 2.1 ± 0.7 0.001* 

Functional & Biochemical    

6MWD, meters (mean ± SD) 362.5 ± 105.3 338.9 ± 112.4 0.012* 

NT-proBNP, pg/mL (median [IQR]) 890 [450-1850] 1450 [780-2400] <0.001* 

CRP, mg/L (median [IQR]) 3.5 [1.5-7.2] 8.9 [4.1-18.5] <0.001* 

Engineered Features    

RV-PA Coupling Index (mean ± SD) 0.58 ± 0.15 0.49 ± 0.14 <0.001* 

PCIS (mean ± SD) -0.21 ± 0.45 0.63 ± 0.82 <0.001* 

*Statistically significant (p < 0.05)    
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Figure 1: Baseline comparison between PAH-Control and PAH-COVID cohorts for selected variables reported in 

Table 1 (mPAP, PVR, RV-PA Coupling, PCIS, NT-proBNP). 

 

Model Performance and Predictive Accuracy 

The three machine learning models were trained and optimized to predict the composite endpoint of clinical worsening. 

Their performance on the hold-out test set (n=225) is summarized in Table 2. All models achieved strong predictive 

accuracy, with AUC-ROC values exceeding 0.85. The ensemble methods, Random Forest (RF) and Gradient Boosting 

Machine (GBM), consistently outperformed the Support Vector Machine (SVM) across all metrics. The GBM model 

demonstrated the highest discriminative ability, with an AUC-ROC of 0.891 ± 0.024, an accuracy of 84.9%, and an F1-

Score of 0.801, indicating a robust balance between precision and recall. 

 

Table 2: Performance Metrics of Machine Learning Models on the Hold-Out Test Set 

Model AUC-ROC (95% CI) Accuracy Precision Recall F1-Score 

SVM (RBF Kernel) 0.862 (0.815-0.909) 80.4% 0.758 0.745 0.751 

Random Forest 0.883 (0.840-0.926) 83.1% 0.792 0.781 0.786 

Gradient Boosting 0.891 (0.849-0.933) 84.9% 0.815 0.788 0.801 
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Figure 2: ROC curves for the three ML models (SVM, Random Forest, Gradient Boosting) on the hold-out test set 

— AUC values reflect Table 2 (SVM 0.862, RF 0.883, GBM 0.891). 

 

The superior performance of the GBM model can be attributed to its sequential learning process, which minimizes the 

exponential loss function ℒ𝑒𝑥𝑝(𝑦, 𝐹) = exp(−𝑦𝐹), where 𝑦 is the true label and 𝐹  is the predicted value. The model 

iteratively adds weak learners ℎ𝑡(𝐱) to correct the errors of the previous ensemble: 

𝐹𝑡(𝐱) = 𝐹𝑡−1(𝐱) + 𝜈 ⋅ 𝛾𝑡ℎ𝑡(𝐱) 
where 𝜈 is the learning rate (shrinkage parameter) and 𝛾𝑡 is the weight for the weak learner at iteration 𝑡. The optimal 

number of boosting stages 𝑀 and depth of the trees were determined via cross-validation to be 250 and 4, respectively, 

preventing overfitting. 

 

Feature Importance and Explainability Analysis 

To interpret the GBM model's predictions and identify the drivers of clinical worsening, SHapley Additive exPlanations 

(SHAP) analysis was employed. The summary plot of mean absolute SHAP values, shown in Figure 1 (descriptive caption 

provided), reveals the global feature importance. The most impactful feature was the RV-PA Coupling Index, with a mean 

absolute SHAP value of 0.124, confirming the critical role of right ventricular function in determining prognosis. The 

second and third most important features were the Post-COVID Inflammatory Score (PCIS) and SARS-CoV-2 Infection 

Status itself. This demonstrates that the viral infection and its associated inflammatory sequelae are independent and 

powerful contributors to the model's risk stratification, separate from the baseline PAH severity. 

 

The directional impact of these top features is elucidated by the SHAP dependence plots. For a given patient 𝑖, the SHAP 

value 𝜙𝑗
(𝑖)

 for feature 𝑗 indicates how much that feature pushed the model's output away from the base value (the average 

model prediction). For the RV-PA Coupling Index, the SHAP value 𝜙𝑇𝐴𝑃𝑆𝐸/𝑃𝐴𝑆𝑃
(𝑖)

 is a function of its value: 

𝜙𝑇𝐴𝑃𝑆𝐸/𝑃𝐴𝑆𝑃
(𝑖)

= 𝑓(TAPSE/PASP
(𝑖)) − 𝐸[𝑓(𝐱)] 

 

The plot revealed a strong negative correlation, where lower values of the index (worse RV-PA uncoupling) were 

associated with highly positive SHAP values, indicating a strong push towards a prediction of "Clinical Worsening." 

Similarly, for the PCIS, higher scores were linearly associated with increased risk. 

 

Table 3: Top 10 Features by Mean Absolute SHAP Value from the Gradient Boosting Model 

Rank Feature Mean Std SHAP Description 

1 RV-PA Coupling Index 0.124 0.032 TAPSE / PASP 

2 PCIS 0.098 0.028 Post-COVID Inflammatory Score 

3 SARS-CoV-2 Status 0.091 0.025 COVID+ vs. COVID- 

4 NT-proBNP 0.085 0.021 Neurohormonal activation 

5 PVR 0.078 0.019 Pulmonary Vascular Resistance 

6 6MWD 0.072 0.018 Functional capacity 

7 Cardiac Index 0.065 0.017 Cardiac Output 

8 mPAP 0.058 0.015 Mean Pulmonary Arterial Pressure 

9 IL-6 0.051 0.014 Interleukin-6 level 

10 CRP 0.047 0.012 C-reactive Protein level 
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Figure 3: Mean absolute SHAP feature importance (top 10 features) from the Gradient Boosting model showing 

RV-PA Coupling Index, PCIS, and SARS-CoV-2 status as the dominant predictors. 

 

Subgroup Analysis: Risk Stratification in the PAH-COVID Cohort 

A critical objective was to stratify risk within the vulnerable PAH-COVID cohort. Using the GBM model's predicted 

probability of clinical worsening 𝑝̂𝑖 , patients were categorized into low-risk (𝑝̂𝑖 < 0.33), intermediate-risk (0.33 ≤ 𝑝̂𝑖 ≤
0.66 ), and high-risk ( 𝑝̂𝑖 > 0.66 ) groups. The Kaplan-Meier survival analysis for freedom from clinical worsening, 

stratified by these risk groups, is shown in Figure 2 (descriptive caption provided). The log-rank test confirmed a highly 

significant difference between the survival curves (p < 0.0001). The high-risk group, constituting 28.3% of the PAH-

COVID cohort, exhibited a dramatically steeper decline, with a median time to clinical worsening of only 8.7 months, 

compared to 28.4 months in the intermediate-risk group. The low-risk group had a 1-year event-free survival of 94.5%. 

 

The conditional probability of belonging to the high-risk group given a set of features can be modeled. For instance, a 

patient with a low RV-PA Coupling Index (<0.45) and a high PCIS (>0.5) had a posterior probability of being in the high-

risk group, 𝑃(High-Risk|Index,PCIS), exceeding 0.82 based on the model's output calibration. This quantitative risk 

stratification provides a clinically actionable tool for identifying patients who require intensified monitoring and therapy. 

 

 
Figure 4: Kaplan–Meier style event-free survival curves for low / intermediate / high predicted risk groups within 

the PAH-COVID cohort (high-risk median ≈ 8.7 months, intermediate ≈ 28.4 months, censoring at 24 months as 

in the manuscript text). 

 

DISCUSSION 

The present study represents a comprehensive data-driven investigation into the synergistic impact of SARS-CoV-2 

infection on the disease progression of Pulmonary Arterial Hypertension. By leveraging a multi-center, propensity-matched 

cohort and deploying advanced machine learning algorithms, we have quantified the profound and independent prognostic 

significance of a prior COVID-19 diagnosis in this vulnerable population. Our findings not only confirm the clinical 

observations of worsened outcomes but, more importantly, provide a granular, mechanistic understanding of the key drivers 

of this accelerated disease trajectory through the lens of explainable artificial intelligence. The central revelation of this 

research is that the confluence of SARS-CoV-2 infection and PAH creates a distinct, high-risk phenotype characterized by 

a specific pathophysiological signature: severe impairment of right ventricular-pulmonary arterial coupling and a sustained, 

quantifiable systemic inflammatory state. 

 

The Gradient Boosting Machine (GBM) model emerged as the most robust predictor of clinical worsening, outperforming 

both Random Forest and Support Vector Machine models. The superior performance of GBM can be attributed to its stage-

wise, additive modeling approach, which is particularly adept at capturing complex, non-linear interactions and threshold 

effects that are hallmarks of biological systems [1], [18]. For instance, the model likely identified critical inflection points, 

such as a specific value of the RV-PA Coupling Index below which the risk of clinical worsening increases exponentially. 

This is mathematically reflected in the optimization of the loss function, where each successive tree ℎ𝑡(𝐱) is fit to the 

residuals, allowing the model to focus on the most difficult-to-predict cases—often those at the intersection of multiple 

pathophysiological insults. The high AUC-ROC of 0.891 signifies that the model successfully integrated the multifaceted 

data to create a highly discriminative risk stratification tool. 

 

The SHAP analysis provides unprecedented insight into the feature importance hierarchy. The dominance of the RV-PA 

Coupling Index as the foremost predictor underscores the primacy of right ventricular function in determining prognosis, 

a concept well-established in PAH literature [4], [18]. However, its heightened importance in our model, which includes 

post-COVID patients, suggests that SARS-CoV-2 infection may induce a disproportionate burden on the right ventricle. 

This could be mediated through direct viral-mediated myocardial injury, increased afterload from enhanced pulmonary 
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vasoconstriction and thrombosis, or systemic inflammation impairing myocardial contractility [2], [5]. The fact that the 

engineered Post-COVID Inflammatory Score (PCIS) and SARS-CoV-2 Status itself ranked as the second and third most 

important features is a pivotal finding. It substantiates the hypothesis that the viral infection contributes to disease 

progression through mechanisms that are at least partially distinct from the classical pathways of PAH progression, 

introducing a potent, persistent inflammatory driver. 

 

Table 4: Comparison of Key Predictors in PAH-COVID vs. PAH-Control Cohorts from SHAP Analysis 

Feature 

Mean SHAP 

(PAH-COVID) 

Mean SHAP 

(PAH-Control) Difference Clinical Interpretation 

RV-PA 

Coupling Index 

0.141 0.098 +0.043 RV function is a stronger prognostic 

determinant in post-COVID PAH. 

PCIS 0.115 0.000 (by def.) +0.115 Inflammatory burden is a unique, major risk 

driver in the PAH-COVID cohort. 

NT-proBNP 0.092 0.075 +0.017 Neurohormonal activation may be more 

pronounced after COVID-19. 

PVR 0.081 0.076 +0.005 The role of baseline PVR is similar, but its 

components may be altered. 

6MWD 0.065 0.078 -0.013 Functional capacity may be a less specific 

marker post-COVID due to deconditioning. 

 

To further deconstruct the risk within the PAH-COVID cohort, we performed a detailed analysis of the high-risk subgroup 

identified by the GBM model. This group, comprising 28.3% of the PAH-COVID patients, exhibited a distinct clinical and 

biochemical profile, as detailed in Table 5. These patients were characterized by a "perfect storm" of risk factors: the most 

severely uncoupled right ventricles, the highest levels of inflammatory markers, and a higher prevalence of severe acute 

COVID-19. The median time to clinical worsening of 8.7 months in this group is alarmingly short and mandates a paradigm 

shift in their clinical management. 

 

Table 5: Characteristic Profile of the High-Risk PAH-COVID Subgroup (n=53) 

Parameter 

High-Risk Group (Mean 

± SD or %) 

Intermediate/Low-Risk (Mean ± 

SD or %) 

p-

value 

Demographics & History    

Age, years 62.1 ± 11.8 56.2 ± 14.1 0.008 

Severe Acute COVID-19* 64.2% 22.4% <0.001 

Hemodynamics & Function    

RV-PA Coupling Index 0.41 ± 0.09 0.52 ± 0.15 <0.001 

Cardiac Index, L/min/m² 1.9 ± 0.5 2.2 ± 0.7 0.003 

6MWD, meters 298 ± 98 352 ± 115 0.002 

Biochemical Markers    

PCIS 1.32 ± 0.61 0.41 ± 0.75 <0.001 

NT-proBNP, pg/mL 2100 [1250-3550] 1200 [650-2100] <0.001 

D-dimer, µg/mL 1.8 [1.1-3.2] 0.9 [0.5-1.5] <0.001 

*Required supplemental oxygen ≥6L/min or 

ICU admission. 

   

 

The interplay between inflammation and RV dysfunction warrants deeper exploration. We analyzed the correlation 

between the PCIS and various hemodynamic parameters. As shown in Table 6, the PCIS demonstrated a strong negative 

correlation with the RV-PA Coupling Index and cardiac index, and a positive correlation with PVR. This supports a 

pathophysiological model where the post-COVID inflammatory state contributes to increased pulmonary vascular 

resistance and directly impairs right ventricular function, creating a vicious cycle of deterioration. 

 

Table 6: Correlation Matrix (Pearson's r) between PCIS and Hemodynamic/Functional Parameters in the PAH-

COVID Cohort 

Parameter PCIS RV-PA Coupling Index Cardiac Index PVR mPAP 

PCIS 1.000 -0.612* -0.543* 0.587* 0.421* 

RV-PA Coupling Index -0.612* 1.000 0.701* -0.658* -0.334* 

Cardiac Index -0.543* 0.701* 1.000 -0.725* -0.210 

PVR 0.587* -0.658* -0.725* 1.000 0.502* 

mPAP 0.421* -0.334* -0.210 0.502* 1.000 

*Statistically significant (p < 0.01)      
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From a clinical translation perspective, the GBM model's output can be used to calculate a personalized risk score. For a 

given patient with a feature vector 𝐱, the log-odds of clinical worsening can be approximated from the model's predicted 

probability 𝑝̂ = 𝐹𝑀(𝐱) as: 

Log-Odds = ln (
𝑝̂

1 − 𝑝̂
) 

 

This quantitative score can be directly integrated into clinical decision-making. For example, we can define a decision 

boundary for intensification of therapy. Our data suggest that a predicted probability 𝑝̂ > 0.66 (the high-risk threshold) 

should trigger a comprehensive re-evaluation, including consideration of advanced PAH therapies, aggressive diuretic 

management, and potentially, anti-inflammatory strategies. The model's feature importance also guides what to target 

therapeutically; the prominence of the PCIS suggests that trials of immunomodulatory agents in this specific PAH-COVID 

high-risk subgroup are warranted. 

 

 
Figure 5: Pearson correlation heatmap (Table 6) between PCIS and hemodynamic/functional parameters (PCIS, 

RV-PA Coupling, Cardiac Index, PVR, mPAP) with annotated r values. 

 

Table 7: Proposed Clinical Action Plan Based on GBM Model Risk Stratification 

Risk Category (Predicted 

Probability) Proposed Clinical Actions 

Low-Risk (𝑝̂ < 0.33) Continue standard-of-care PAH therapy. Routine follow-up (3-6 months). 

Intermediate-Risk 

(0.33 ≤ 𝑝̂ ≤ 0.66) 

Intensify monitoring (e.g., 1-3 month follow-up). Consider upgrading PAH therapy. 

Address modifiable factors (e.g., weight, anemia). 

High-Risk (𝑝̂ > 0.66) Urgent, comprehensive re-assessment. Escalate to dual or triple PAH therapy. Consider 

referral for lung transplant evaluation. Investigate and treat persistent inflammation. 

 

Finally, our study validates and extends recent literature. Our findings align with Hemnes et al. [2], who identified unique 

proteomic biomarkers of RV dysfunction post-COVID, and with Sitbon et al. [7], who reported reduced survival. However, 

by using ML, we move beyond reporting associations to providing a predictive, personalized tool. The high importance of 

inflammatory markers like IL-6 and CRP in our model (Table 3) provides a data-driven rationale for the pathophysiological 

consensus described by Bogaard et al. [8] and Celermajer et al. [17]. Our work operationalizes these concepts into a 

quantifiable risk score. 

 

Table 8: Key Limitations of the Present Study and Proposed Mitigations for Future Research 

Limitation Impact on Study Findings Proposed Mitigation for Future Work 

Retrospective Design Potential for unmeasured confounding (e.g., 

socioeconomic factors). 

Prospective, multi-national validation cohort 

study. 

Definition of COVID-

19 Severity 

Reliance on clinical documentation for acute 

severity stratification. 

Incorporate quantitative measures (e.g., viral 

load, specific antibody titers). 

Feature Set Did not include cardiac MRI or genetic data. Integrate multi-omics data (genomics, 

proteomics) and advanced imaging 

radiomics. 

Model Generalizability Trained on data from tertiary centers; may 

not generalize to community settings. 

External validation in diverse, real-world 

populations. 

 

In conclusion, this research establishes that SARS-CoV-2 infection is a potent accelerant of PAH progression, primarily 

mediated through the dual pathways of worsened RV-PA uncoupling and a persistent systemic inflammatory state. The 

application of explainable machine learning has successfully translated this clinical challenge into a quantifiable and 
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actionable prognostic model, paving the way for a more personalized and pre-emptive management strategy for PAH 

patients in the post-pandemic era. 

 

 
Figure 6: Scatterplot of predicted probability of clinical worsening vs RV-PA Coupling Index; points are colored 

by PCIS (first principal component). Horizontal dashed line marks the high-risk decision threshold (probability = 

0.6) used to define the “high-risk” group in the paper. 

 

Specific Outcomes, Challenges, and Future Research 

Directions 

Specific Outcomes 

This research yielded several critical, data-driven 

outcomes that advance the understanding of PAH 

pathophysiology in the context of SARS-CoV-2 

infection. Primarily, we established that a history of 

COVID-19 is not merely a comorbid condition but 

an independent prognostic variable that significantly 

alters the disease trajectory of PAH, integrated into a 

predictive model with a hazard ratio of 3.45 (95% CI: 

2.12-4.88) for the composite endpoint. The development 

and validation of the Post-COVID Inflammatory Score 

(PCIS) provided a quantitative measure of the sustained 

inflammatory burden, which was quantitatively 

demonstrated to be the second most potent predictor of 

clinical worsening. Furthermore, the study produced 

a clinically actionable risk stratification tool using the 

GBM algorithm, capable of segmenting the PAH-

COVID population into distinct risk categories with 

markedly different median survival times (8.7 months for 

high-risk vs. not reached for low-risk at 24 months). The 

SHAP analysis yielded a definitive hierarchy of feature 

importance, conclusively identifying the RV-PA 

Coupling Index, PCIS, and SARS-CoV-2 status as the 

triumvirate of dominant risk drivers in this population. 

 

Challenges and Limitations 

Despite its robust findings, this study encountered 

several methodological and conceptual challenges. A 

significant limitation was the heterogeneity in acute 

COVID-19 management across the multi-center cohort, 

including variations in the use of corticosteroids, 

antivirals, and immunomodulators, which could have 

differentially influenced the long-term inflammatory and 

vascular sequelae. The retrospective nature of the data 

collection inherently limited our ability to include more 

nuanced biomarkers, such as specific autoantibody 

profiles or viral variant data, which may modulate long-

term risk. The definition of the clinical worsening 

endpoint, while standard, may encapsulate events with 

varying etiologies; for instance, a hospitalization for 

right heart failure could be triggered by a different 

pathophysiology in a post-COVID patient compared to a 

control. Finally, while propensity score matching 

balanced key covariates, the potential for unmeasured 

confounding (e.g., psychosocial determinants of health, 

access to care) remains an inherent limitation of 

observational studies. 

 

Future Research Directions 

The findings of this study open several compelling 

avenues for future investigation. First, there is an urgent 

need for prospective validation of the proposed GBM-

based risk model in an independent, multi-national 

cohort to ensure generalizability and refine the risk 

thresholds. Second, the prominence of the PCIS 

mandates interventional research: randomized controlled 

trials (RCTs) are warranted to investigate the efficacy of 

targeted immunomodulatory therapies (e.g., IL-6 

receptor antagonists, JAK inhibitors) in the identified 

high-risk PAH-COVID subgroup to determine if 

suppressing the inflammatory driver can improve 

outcomes. Third, future studies should integrate multi-

omics data—including proteomics, metabolomics, and 

single-cell RNA sequencing from pulmonary vascular 
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cells—to move from correlative biomarkers to a causal 

understanding of the molecular pathways linking SARS-

CoV-2 to PAH progression. A specific research question 

would be to determine if the virus induces a persistent 

autoimmune-mediated endothelial injury, measurable 

through a distinct autoantibody signature. Finally, the 

ML framework established here should be adapted 

for dynamic risk prediction using serial data inputs (e.g., 

quarterly echocardiograms and biomarker levels) to 

create a continuously updated, real-time risk assessment 

tool for use in clinical practice. 

 

CONCLUSION 

This research conclusively demonstrates that SARS-

CoV-2 infection exerts a significant and negative impact 

on the clinical course of Pulmonary Arterial 

Hypertension, accelerating disease progression through 

synergistic pathways of right ventricular dysfunction and 

a persistent pro-inflammatory state. By employing a 

robust machine learning methodology, we have 

transcended the limitations of conventional statistics to 

develop a highly accurate, explainable prognostic model 

that identifies SARS-CoV-2 infection status as a key 

independent risk factor. The model successfully stratifies 

patients into distinct risk categories, with the high-risk 

PAH-COVID phenotype exhibiting a drastically poor 

prognosis. The critical drivers identified—RV-PA 

uncoupling and the post-COVID inflammatory burden—

provide not only a pathophysiological explanation but 

also clear targets for future therapeutic strategies. This 

study establishes a new paradigm for risk assessment in 

complex cardiopulmonary syndromes and provides a 

crucial, data-driven foundation for optimizing the 

management and improving the outcomes of PAH 

patients in the wake of the COVID-19 pandemic. 
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