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sensitivity, specificity, recall, accuracy, and precision metrics compared to existing methods.

Article History

Received: 14.07.2025
Revised: 22.08.2025
Accepted: 19.09.2025
Published: 04.10.2025

Keywords: Dropout-layer Induced Long Short-Term Memory, Tent Map-based Red Fox
Optimization, Trapezoidal Adaptive Neuro-Fuzzy Inference System, deep neural network, Cardiac
Disease Diagnosis.

INTRODUCTION

The major cause of death globally is cardiovascular
diseases (CVDs), which are responsible for millions of
deaths annually [1]. The diagnosis of heart conditions

devices, this raw data frequently contains noise and
artifacts [5]. To guarantee that only pertinent data is input
into the algorithms, preprocessing is therefore an
essential step that entails removing noise and

has traditionally relied on electrocardiogram (ECG)
signals, and better patient outcomes depend on the early
identification and management of these conditions.
ECGs provide a non-invasive way to record the electrical
activity of the heart and are essential for detecting
abnormalities such as arrhythmias, myocardial
infarctions, and other cardiac dysfunctions [2].
Cardiologists' manual interpretation is the mainstay of
conventional ECG analysis methods, which can be time-
consuming and prone to human error [3]. However, in
recent years, there has been a noticeable trend toward
automating this process through the use of deep learning
(DL) and machine learning (ML) technologies, which
have demonstrated great promise in enhancing the
accuracy and efficacy of cardiac detection systems [4].
These sophisticated computational methods use
algorithms to filter and analyze large, complicated
datasets, revealing aspects and patterns that human
observers might not see right away.

A cardiac diagnosis system that incorporates ML and DL
models can vastly improve the diagnostic workflow. The
process begins with data acquisition, where ECG signals
are captured from patients using sensors and other
monitoring devices. Due to several variables, including
patient mobility and interference from other electronic

standardizing the data. Once the data is preprocessed,
feature extraction is performed to identify key
characteristics of the ECG signals that are indicative of
specific cardiac conditions. Traditionally, this involved
manual extraction of features like heart rate, QRS
complex duration, and ST segment deviation. However,
with deep learning, feature extraction can be automated,
allowing models to learn and identify complex features
directly from the data [6].

The classification of ECG signals has heavily relied on
machine learning techniques including k-nearest
neighbors (KNN), random forests, and support vector
machines (SVM). SVM operates by determining the best
hyperplane to divide various data classes, and it is very
useful for binary classification applications. While
random forests are resistant to overfitting, they are
ensemble approaches that use several decision trees to
handle high-dimensional data and enhance classification
accuracy [7]. KNN classifies data points based on their
proximity to other labeled data points, and while simple,
it can be effective in distinguishing between different
types of arrhythmias. Despite their effectiveness, these
traditional ML algorithms require manual feature
engineering and are often limited in their ability to
handle complex, high-dimensional data [8].
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Deep learning models come into play here, offering
significant advantages over traditional methods. For
example, Convolutional Neural Networks (CNNs) are
particularly well-suited for processing and evaluating
ECG signals because they can automatically learn
hierarchical properties from raw data. To accurately
categorize cardiac illnesses, CNNs are composed of
multiple layers that recognize patterns [8], such as
shapes, edges, and higher-level characteristics.Because
they are designed to handle sequential data, recurrent
neural networks (RNNs), including Long Short-Term
Memory (LSTM) networks, are ideal for processing
time-series data, including ECG signals. The ability of
LSTMs to identify patterns over time and capture long-
term interdependence is crucial for diagnosing illnesses
with temporal variability [9].

Deep learning techniques like autoencoder are employed
for unsupervised learning tasks like dimensionality
reduction and feature extraction. They acquire
condensed representations of ECG signals, which can
subsequently be applied to tasks involving anomaly
detection or classification [10]. Deep learning models'
automatic feature extraction capabilities lessen the need
for human input and make it possible to find intricate
linkages and subtle patterns in the data. Deep learning
models are also very useful tools in the context of cardiac
diagnostics since they can be trained on vast datasets to
increase their prediction accuracy and generalization
skills [11].

Heart disease datasets are crucial for the creation and
evaluation of these complex cardiac detection
algorithms. These sets often include annotated
electrocardiograms from both healthy individuals and
patients with various heart conditions.
PhysioNet/Computing in  Cardiology  Challenge
databases, the MIT-BIH Arrhythmia Database, and the
PTB Diagnostic ECG Database are just a few of the well-
known datasets that researchers can use to train and test
machine learning models [12].The MIT-BIH Arrhythmia
Database, for instance, has over 48 half-hour snippets of
two-channel ambulatory ECG recordings that are labeled
with various types of arrhythmias to develop robust
classification algorithms. The availability of such
extensive datasets makes it possible to rigorously test and
validate machine learning models, guaranteeing their
correctness and dependability in actual clinical settings.

There are many advantages of integrating ML and DL in
cardiac diagnostic systems. First of all, by analyzing
ECG signals almost instantly, these devices can
drastically cut down on the amount of time needed for
diagnosis and facilitate quicker clinical decision-making.
In emergency cases where prompt diagnosis and
treatment are crucial, this is especially crucial [13].
Second, the computerized analysis frees up medical staff
to concentrate on more complicated cases that call for
human  knowledge.Furthermore, by  improving
diagnostic precision, deep learning and machine learning

models can reduce the likelihood of misdiagnosis and
false positives.These tools improve the accuracy of
cardiac diagnosis, which eventually improves patient
outcomes, by spotting minute patterns and abnormalities
that human observers might miss. But putting these
technologies into practice is not without its difficulties.
Access to sizable, superior datasets that are
representative of many patient populations is necessary
for the creation of successful machine-learning models
[14]. Another big worry is making sure that data is secure
and private, especially when it comes to private medical
data.The incorporation of models based on machine
learning and deep learning into the existing healthcare
infrastructure  requires thorough evaluation and
coordination by technology developers, clinicians, and
regulatory bodies to ensure seamless adoption and
conformity to medical norms [15].Despite these
challenges, ML for cardiac diagnostics have huge
potential benefits, and more research and development in
this field should lead to significant advancements in the
diagnosis and treatment of heart diseases. The main
contributions of this study are summarized as follows:

e  Thiswork combines a deep neural network uses
DI-LSTM model and T-ANFIS, leveraging the
strengths of both models for accurate and
efficient cardiac disease diagnosis from ECG
signals.

e TM-RFO is used to identify features efficiently,
enhance exploration, and stay clear of local
optima.

e To improve generalization and decrease
overfitting when classifying ECG signals as
normal or abnormal, the DI-LSTM network is
implemented.

e The suggested model performs better than
current methods, categorizing cardiac diseases
with greater accuracy, precision, recall,
sensitivity, and specificity.

The document's remaining sections are organized as
follows. Cardiovascular disease prediction was covered
in Section 2. Section 3 describes the proposed T-ANFIS
model. Section 4 presents the results of experiments
conducted using the datasets. Section 5 concludes the
current study work.

Related work

Karthik et al. [16] developed an automated algorithm
based on deep learning for identifying 1D bio ECG
signals to diagnose cardiovascular disease.The DLECG-
CVD model has several operational steps, including pre-
processing, feature extraction, hyperparameter tuning,
and classification. Data pre-processing is the initial step
in transforming the ECG results into actionable
information and getting them ready for further analysis.
A deep belief network (DBN) model is then used to
produce a set of feature vectors. To optimize the
hyperparameters of the DBN model, the Improved
Swallow Swarm Optimization (ISSO) technique is
employed. Lastly, the test ECG data is given the proper
class labels using the Extreme Gradient Boosting
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classifier. The benchmark PTB-XL dataset was used in
simulations to validate the improved diagnostic
performance of the DLECG-CVD model. The model
showed gains in kappa, Matthew correlation coefficient,
accuracy, sensitivity, specificity, and hamming loss after
a thorough comparison examination.

Abubaker et al. [17] created a new lightweight CNN
design that outperformed current state-of-the-art
techniques in cardiovascular disease categorization,
increasing the accuracy rate to 98.23%. The model may
run on a single CPU, circumventing computing power
constraints, and this was accomplished using a collection
of ECG scans from cardiac patients.Furthermore, a
significant improvement in classification accuracy was
obtained when the proposed method was used as a
feature extraction tool for traditional machine learning
techniques. For instance, the Naive Bayes algorithm
achieved an accuracy of 99.79%. This approach can be
included in the healthcare 10T ecosystem, encouraging
other Al researchers to look at cutting-edge methods for
cardiovascular disease diagnostics.

Mhamdi et al. [18] created algorithmic models for
analyzing ECG tracings to predict cardiovascular
disorders to save lives and enhance healthcare at a
reduced cost. As the cost of healthcare and insurance
rises globally, this work holds enormous promise for
offering life-saving and reasonably priced solutions. A
validation accuracy of approximately 0.95 was attained
by the MobileNetV2 and VGG16 algorithms following a
thorough testing process to adjust deep learning settings.
Accuracy marginally dropped to 0.94 and 0.90 when
MobileNetV2 and VGG16 were installed on a Raspberry

Pi. The primary objective of this study was to enhance
real-time monitoring easily and economically using
smart mobile technologies such as smartphones,
smartwatches, and connected T-shirts.

Daydulo et al. [19] created an automated deep-learning
algorithm that can correctly categorize ECG data into
three groups: cardiac arrhythmia (ARR), congestive
heart failure (CHF), and normal sinus rhythm (NSR).
This was accomplished by pre-processing and
segmenting ECG data from the MIT-BIH and BIDMC
databases that are accessible on PhysioNet before the
model being trained. Pre-trained models, including
ResNet 50 and Alex Net, were set up and tweaked to
provide the best classification results. The proposed deep
learning model demonstrated an overall classification
accuracy of 99.2% on the test data, with an average
sensitivity of 99.2%, specificity of 99.6%, and precision,
F-measure, and recall of 99.2%.

Ram et al. [20] used three deep learning models—
Multilayer Perceptron’s (MLPs), Deep Belief Networks
(DBNSs), and Restricted Boltzmann Machines (RBMs)—
as well as electrocardiogram (ECG) signals as the main
data source in order to identify heart disorders. Their
model was trained and evaluated using the MIT-BIH and
PTB-ECG datasets, which are both publically available.
In comparison to earlier models, the hybrid model
demonstrated remarkable accuracy, achieving 98.6%,
97.4%, and 96.2% on the MIT-BIH dataset and 97.1%,
96.4%, and 95.3% on the PTB-ECG dataset,
respectively. Furthermore, the robustness of the
suggested method was shown by high F1 scores and
AUC values.

Problem statement
e The identification and separation of distinct heart disease types is a crucial gap in many current approaches used
in the context of cardiac illness detection systems. The accuracy and efficacy of diagnosis and therapy may be

severely impacted by this disparity.

e Existing heart disease diagnosis systems may struggle with accurate classification due to their inability to
effectively handle and integrate different types of datasets.

e The existing systems may not effectively select and prioritize relevant features from diverse datasets, leading to
the inclusion of irrelevant or redundant features that adversely affect model performance.

e Multiple sources of high-dimensional data may cause overfitting, in which the classification model picks up noise
and particular training data patterns instead of broadly applicable patterns. When applied to fresh, untested data,

this leads to decreased accuracy.

Table 1: Evaluation of current methods for diagnosing CVVD in comparison

Author Dataset Methods Accuracy Limitation
Karthik et al. [16] PTB-XL dataset DLECG-CVD The DLECG-CVD | The DLECG-CVD model's
model model achieved a | reliance on the PTB-XL
high accuracy rate in | dataset limits its
diagnosing generalizability.
cardiovascular
diseases from ECG
signals.
Abubaker et al. [17] | ECG Images | Lightweight CNN At 98.23%, the | The model's reliance on one
Dataset of Cardiac lightweight CNN | dataset limits its
Patients architecture applicability to  other
obtained a | populations.
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remarkable
accuracy rate.

Mhamdi et al. [18] | Training and testing | Mobile Net V2 and | The proposed model | The model may not perform

dataset VGG16 algorithms | achieves 95% effectively for all types of
cardiac arrhythmias.
Dayduloetal. [19] | MIT-BIH and | Deep learning | 99.2% accuracy is | Less reliable
BIDMC databases model attained with the
deep learning
model.
Ram et al. [20] MIT-BIH, PTB- | HybDeepNet model | HybDeepNet Model | More diverse datasets
ECG dataset achieves an

accuracy of 98.6%.

Proposed Methodology for Cardiac Disease Diagnosis System

This paper presents an advanced cardiac disease diagnosis system that combines an Enhanced deep neural network using
a DI-LSTM network and a T-ANFIS, utilizing patient ECG signals as input. Initially, the ECG signals are decomposed and
pre-processed to eliminate baseline wandering and smooth the data, preparing it for beat feature extraction. For feature
selection, the system uses the Tent Map-based Red Fox Optimization (TM-RFO) algorithm, which enhances exploration
capabilities in complex search landscapes by integrating chaotic dynamics, allowing the algorithm to bypass local optima
without relying on gradients. The selected features are then fed into a deep neural network using a DI-LSTM network,
tailored for managing sequential data and minimizing overfitting through the random dropout of units during training,
which improves generalization. If the model detects an abnormal heartbeat, the data is further analyzed using T-ANFIS.
This model leverages adaptive trapezoidal membership functions that fine-tune during training to capture intricate data
distributions accurately. T-ANFIS classifies specific cardiac conditions, including Atrial Fibrillation (AFib), Ventricular
Fibrillation (VFib), and Bradycardia. The system’s performance is evaluated against existing methodologies using various
quality metrics. Fig. 1 depicts a block schematic of the suggested approach.

; ; | Preprocessing |
RAWECG | ,  Signas | P 2 | , BestFeature | e okt

Signals decomposition Baseline wandering Extraction s

removal and signal | TM-REO
smoothening

Classification
D ‘3
Atrial fibrillation (A-Fib) < |DI-LSTM]|

ontr: e r s Micro 1 [

Ventricular fibrillation (V-Fib) Classification Abnormal |  Normal
| T-ANEIS |
Bradycardia i

Fig 1: The suggested cardiac disease diagnosis system's block diagram

Raw ECG signals
ECG images from cardiac diseases and raw ECG signals X(t) from the MIT-BIH collection offer a wealth of labeled ECG

recordings of the heart's electrical activity throughout time. These signals, which are obtained from patients using
conventional electrodes applied to the skin, may contain baseline drift, noise, and artifacts for a variety of causes.

Signal decomposition
The acquired ECG signal X(t) can be decomposed into various components using techniques.

The Hilbert transform is a mathematical operation that transforms a real-valued function (signal) into another function that
provides important information about the original signal, specifically its instantaneous amplitude and phase. It is widely
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used in signal processing, communications, and various fields of engineering and physics. It X(t) is the input ECG signal,
the Hilbert transform H(X(t))is given by,

Hxt)= Lpy ﬁ%df "

Where P.V denotes Cauchy's principal valuewhich is needed due to the singularity att — 7, H(X(t)) Hilbert
transform X(t).

Pre-processing
In this pre-processing, baseline wandering removal is performed and then the signal is smoothened.

Baseline Wandering Removal
Baseline wandering refers to slow variations in the ECG signal caused by patient movement or respiration, which is

removed using a high-pass filter. The cut-off frequency of the filter fc is typically between 0.5-0.7 Hz to remove low-

frequency noise while preserving important ECG features. The high-pass filter function H (f ) is expressed as:

H(f)=—— 0

JF2+ 2
Where f_ the cut-off frequency of the filter (around 0.5 Hz for ECG), f is the signal frequency, H(f ) the

frequency response of the filter at frequency f .

Signal Smoothing
After baseline wandering is removed, the ECG signal is further smoothened using a Gaussian filter to remove noise. The
Gaussian function is defined as,

tZ

G(t)=———e % 3)

Where & is the standard deviation, t is the time variable. Convolving the ECG signal with this filter reduces high-
frequency noise while preserving the essential features.

Feature extraction

After pre-processing, beat features(R-peak detection, RR intervals, QRS detection, heart rate variability (HRV), mean and
standard of RR intervals), Amplitude features (max amplitude and min amplitude), statistical features (mean, standard
deviation, kurtosis and skewness) and time domain features (rms, signal energy and no of peak) and other ECG signal
characteristics are extracted. These features form a feature vector F :

F=[f, . f,] )

Where f, represents a specific feature extracted from the ECG signal.

Feature selection using TM-RFO

For this feature selection process, the extracted features F are selected using the TM-RFO algorithm.The existing RFO
[21] algorithm is notable for its simplicity and speed, as it does not require gradient information, which distinguishes it
from many other optimization methods. However, RFO tends to converge prematurely to local optima, particularly in
complex, multimodal landscapes where it can be difficult to differentiate between local and global optima. The proposed
TM-RFO is an enhanced optimization technique that integrates the RFO algorithm with the Tent Map to improve the
exploration capabilities of the algorithm, especially in complex, multimodal search spaces.To avoid early convergence to
local optima, this feature selection approach seeks to identify the most pertinent features from the feature vector.

In feature selection, the goal is to find an optimal subset of features S — X from the feature set
X = {Xl, Xy, Xg e X, } the objective is to maximize classification performance with the fewest possible features to

reduce complexity and increase model interpretability. The optimization is represented by an objective function J (S )

rSnaQ(J(S): Acc(S) - AS| )
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Where |S|severa| features, A are a regularization parameter to penalize a larger subset.

Initialize the population of foxes
Each individual in the TM-RFO population, called a fox represents a candidate subset of features, encoded as a binary

vector P, =[Pi',Pi2,,...PinJ.
The algorithm initializes a population of N foxes by randomly assigning binary values to the elements in each
vector P,. This random initialization creates diverse candidate solutions, covering different portions of the feature space.

For each fox P, , the fitness is evaluated using the objective function:
J(R)= Acc(R)- 2/ ©)
Where ACC(Pi )is the classification performance using the feature represented by P, , A is a regularization parameter, and

|P,| is the count of selected features.

Exploitation and Exploration Phases in TM-RFO

The TM-RFO algorithm alternates between two phases’ exploitation (local search) and exploration (global search). This
alternating approach enables the algorithm to refine promising solutions while exploring the search space broadly to avoid
premature convergence.

Exploitation Phase (Local Search)
In the exploitation phase, the algorithm performs a local search around high-fitness solutions. Small changes or “mutations”

are made to the fox’s position vector P;, which may involve flipping one or a few bits (i.e., selecting or deselecting a small
number of features).
For instance, with a small probability €, each element p;; is updated as:

1-p:, if a randomnumber<e

t+1 1)

Pij =9 : (7
Pij otherwise

This local flipping enables minor adjustments around the current subset, allowing the algorithm to fine-tune its selection
to improve fitness.

Exploration Phase (Global Search using Tent Map)
In the exploration phase, the algorithm uses the Tent Map to introduce chaotic behavior, enhancing its ability to explore
the search space and avoid local optima.

The tent map T(X) is defined as:
T@}—ZK if 0<x<0.5,
~20-x), if 0.5<x<1.

This chaotic function generates values in the interval (0, 1), providing non-linear, unpredictable sequences that enhance
global exploration.

(8)

Update Positions Using Tent Map Dynamics
The tent map introduces chaotic sequences into the position updates of each fox, facilitating large, random-like jumps in

the feature space. X Represents the current position of the fox, the tent map generates a new value T (X , and

current current )

the updated position X, is calculated as:

Xpew = X

new

+ T (Xgrrent ) )

new current

Where & is a scaling factor that controls the influence of the Tent Map on the position update, X the previous value

current
of the same vector, X, represents the updated or new value of a variable. Since feature selection is binary, the continuous
positions generated by the Tent Map are mapped back to binary format by applying a threshold.
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o |tee ifT(x)>6
Pi =3 ., . (10)
Pij otherwise

This chaotic, binary flipping ensures each fox’s position remains in the binary format required for feature selection.

Fitness evaluation of updated population:
After updating each fox position, the fitness function is recalculated for the new subset. For each fox ptt:

J(Pit+l): ACC(PitJrl)_ﬂ“‘PiHl (11)

Where the classification accuracy using the subset of features measures ACC(Pi”l) indicated by Pi”l, and ‘Pim‘ counts

the selected features. The best fitness J *(S)observed so far is recorded, and the fox associated with this fitness is updated
as the current best solution.

Convergence Criteria
The TM-RFO algorithm keeps switching between the exploration and exploitation stages until a halting condition is
satisfied. Common standards consist of:
e  The number of iterations reaches a maximum.
e  The best fitness does not significantly improve over successive iterations.
When the algorithm converges, the solution with the highest fitness is chosen as the final subset of selected features.

Optimal feature subset

The final output is the feature subset S " that yields the best fitness, balancing high classification accuracy with a
minimal number of features. The final subset is expressed as,
S” =arg max(Acc(S)- 2]3)) (12)

ScX

Where S is subsequently used in model training for classification task A s, represents the regularization
parameterbenefitting from reduced computational cost and improved interpretability.

Classification using DI-LSTM

The selected features are fed into the DI-LSTM model. The existing LSTMs [22] are a type of RNN designed to capture
long-range dependencies in sequential data. Unlike traditional RNNs, LSTMs are better at retaining information over
longer sequences due to their unique memory structure. Traditional LSTM networks [22] are optimized for handling
sequential data, making them effective for such tasks; however, they contain numerous parameters due to their architecture,
which includes input, forget, and output gates, along with cell states. The proposed deep neural network enhances this
approach by incorporating DI-LSTMnetwork with four LSTM layers, followed by dropout regularization, a flattening
layer, a fully connected (dense) layer, and an output layer for classification or regression. Fig 2 illustrates the construction
of a deep neural networkarchitecture with DI- LSTM.

LSTM Layer Flatten layer
Dropout Fully connected

layer / ] layer

Input layer

Dropout
layer=0.5 — Output
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Fig 2: Deep Neural Network Architecture with Dropout Induced LSTM

Input layer
Let the selected features be represented as a vector X, € R" at each time step t, where the number of selected features is
N . These features are sequentially fed into the LSTM network over time.

LSTM Layer
An LSTM cell is made up of four main parts: the input gate, the output gate, the forget gate, and the cell state. Each LSTM
cell uses the equations listed below to update its internal configuration and output at any given time:

a. Forget gate
f, =W, [h,,x]+b;) (13)
Here, f, decides which data from the prior cell state C, , should be kept. O is the activation sigmoid
function, W, and b, is the forget gate's weights and biases.

b. Input gate:
The input gate 1, selects which value should be changed in the cell state. It is calculated as:

i, =oW, [h_,x]+b) (14)

Where X, denotes the input at the current time stept, h,_; the hidden state at the previous time step (t —1), and W,
the input gate's weight matrix. bi Is the bias term for the input gate and 0 stands for the sigmoid activation function.

c. Candidate cell state

The candidate cell state Ct introduces a collection of new values that can be added to the input gate-controlled cell state.
It's computed as:

C, = tanh(W, [n,, x]+b,) (15)
Where tanh is the hyperbolic tangent activation function, W, is the weight matrix for generating the candidate cell

state, b and is the bias term for the candidate cell state.
d. Cell state update
The cell state C, is then updated by combining the previous cell state C,, and the candidate cell state C,, controlled by

the forget gate f, and input gate |, . It is calculated as:

The cell stateC, is then updated by merging the previous C,,;and candidate cell state ét, which are regulated by the

forget gate f, and input gate i, . It's computed as:

C = ft *Coy + it *C, (16)
Where *represents elements-wise multiplication. This equation allows the cell state to retain information as

needed while incorporating new information.
e. Output gate

The output gate O, determines whether aspects of the state of the cell should be transferred to the next hidden state. It's
computed as:
o, =W, [h,x]+b,) (17)

Where, W, is the weight matrix for the output gate, htfl represents the hidden state at the previous time step (t —1),

bo and is the bias term for the output gate.
f. Hidden state
The hidden state ht is updated by modifying the output gate O, to the current cell state C, . It is calculated as:
h, = o, *tanh(C, ) (18)
Where ht represents the hidden state at a time step {, O, represents the output gate value at the time stept, tanh(Ct)is
the hyperbolic tangent function applied to the cell state at the time step t .
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Dropout layer
Dropout regularization is applied after each LSTM layer to prevent overfitting. It randomly sets a fraction P of the input

units to zero during training. Dropout maskis applied after each LSTM layer to prevent the network from becoming overly
reliant on specific neurons. The mathematical operation for dropout at each time step is:

h, =M_h, (19)

Where, M, ~ Bernoul(p)is a binary mask with a probability p of retaining the neuron, h, is the output of the LSTM

A

layer, h, is the output after dropout.

Dense layer
The fully connected layer is used to transform the features extracted by the LSTM layers into the final output. For this

layer, we have an input vector h from the last LATM layer and it is mapped to an output vector using weight matrix W,
and bias vector by b .
y=W,.h, +b, (20)

Where Y represents the output of a neural network layer, W, represents a weight matrix that connects the input ht to the

output Y , b, bias term that is added to the weighted sum of the inputs.

Output layer
For classification tasks, logits are transformed into probabilities by the output layer's softmax activation.

y = softmax(y) (1)
Where Y represents the input to the softmax function, Y represents the output of a neural network layer.

Cardiac Disease Classification using T-ANFIS

The features extracted from an abnormal ECG signal are fed into the T-ANFIS to identify the specific type of cardiac
disease. Traditional ANFIS models [23] merge neural networks with fuzzy logic, allowing them to effectively manage
complex systems, including nonlinear relationships and uncertainties. However, conventional membership functions are
predefined and may not adequately represent complex or unusual data distributions. While fuzzy logic offers some level
of adaptability, it may not be sufficient for all data types. The proposed T-ANFIS utilizes trapezoidal membership functions
that dynamically adjust their shapes based on the training data. By integrating machine learning techniques, T-ANFIS
optimizes these parameters to enhance classification accuracy.

Input layer
The T-ANFIS system takes abnormal ECG data as input. These features are represented X = {Xl, Xy ypeennn X, }, where

each X; represents features related to heart activity, Such as RR intervals, QRS duration, etc. These input features form the
basis for diagnosing specific types of cardiac abnormalities.

Fuzzification layer

This layer utilizes membership functions to convert sharp input values into fuzzy values. In T-ANFIS, trapezoidal
membership functions are used due to their ability to represent imprecise data effectively.The trapezoidal membership
function for an input X can be defined as:
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0 Xx<a
x-a a<x<b
b-c
ua(x)=41 b<x<c (22)
d-x c<x<d
d-c
0 x>d

Where A is a fuzzy set defined by the parameters a, b, c,d ?

Rule layer
This layer's nodes each stand for a fuzzy rule. Each node's output is calculated by multiplying its input membership values.
Wi = Uy (Xl )'/uBi (Xz ) (23)

Where W, signifies the rule's firing strengthi, (Xl) is amembership function for the variable X, in a fuzzy

set A, L (Xz) is amembership function for the variable X, in a fuzzy set B, .
For the rules of the form:
R, :If x is A and X, is B, (24)

Normalization layer
The firing strengths W, , from the previous layer are normalized to produce relative weights for each rule. The normalized

firing strength W, is computed as:

W.

W, = ——— (25)

j:lWJ
Where W, represents the normalized or weighted value of W;, W; is the original value of the i" element in a set of values.
N Is the number of rules.

Defuzzification layer
This layer outputs the weighted consequence of each rule using a linear function of the inputs. For a given rule I, the

defuzzified output Z; is defined as:
z; =W (P, + 0%, +1,) (26)

Where P;,0;,and r;are the consequent parameters for the rule .

Output layer
The sum of the contributions made by each rule produces the outcome:

N N
Fzzzi :Zwi'(pixl+qixz+ri) (27)
i1 i1

This output F represents a continuous value that can be interpreted as the probability of a specific cardiac disease. TheT-
ANFIS modelutilizes the learned fuzzy rules to classify the input features such as normal, AFib, VFib, or Bradycardia.

RESULT AND DISCUSSION

The cardiac disease detection system based ondeepneural network model for DI-LSTM and the T-ANFIS has been verified.
The performance of the suggested technique was compared to that of LSTM [22], ANN [24], and SVM [25]. The
implementation results were generated using Intel Core i7 CPUs operating at 1.6 GHz and the Python platform.

Dataset description
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This dataset contains images produced from ECG recordings and is specifically designed for the research of heart diseases.
The images are classified according to various heart states, enabling for classification tasks and the study of cardiac diseases

[28].
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Fig3:Pre-processing phases of an ECG signal for the ECG Images dataset (a) sample 1(b) Sample 2 (c) Sample
3(d) Sample 4

Fig 3 illustrates the pre-processing stages of an ECG signal for the ECG Images dataset of Cardiac Patients analysis. The
first plot shows the original ECG signal with its raw amplitude variations over time. The second plot presents the amplitude
envelope of the ECG signal, extracted using the Hilbert Transform, which highlights the signal's amplitude variations more
clearly, making it easier to analyze peak patterns. The third plot displays the ECG signal after baseline wandering removal,
which corrects low-frequency shifts, stabilizing the baseline and improving signal clarity. The final plot shows the
smoothed ECG signal, where noise and small fluctuations are reduced to provide a cleaner signal, emphasizing the primary
waveform features critical for accurate feature extraction and further analysis.
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ECG Arrhythmia Image Dataset

Arrhythmia ECG Using deep neural network architectures, image datasets have been used to investigate heartbeat
categorization and observe some of the transfer learning capabilities. The signals match the heartbeat forms on an ECG in
both normal and arrhythmia- and myocardial infarction-affected situations. Each segment of these pre-processed and
segmented data represents a heartbeat [29].

Performance metrics

Performance can be assessed using a variety of criteria, including sensitivity, specificity, F1-score, accuracy, precision,
recall, and recall. We employ the statistical indicators given in this section to evaluate the efficacy of our proposed
approach. The metrics computed include true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Table 1 shows the computations for several performance metrics.

Table 2: Performance metrics

Performance Measures Formula
Accuracy (TN +TP)
(TN+TP +FN +FP)
Precision TP
(TP + FP)
Recall TP
TP + FP)
F1-Score F_2PR
~P+R
Sensitivity TP
TP + FN
Specificity TN
TN + FP
AUC l TP N TN
2\TP+FN TN +FP
Performance Evaluation for ECG Images Dataset
Accuracy
1.0
0.9
g *
0.8 A
— L . -~ ,, -
*- ke 4
0.7
0.6 -
05 T T T T
LSTM ANN SVM Proposed

Methods

Fig 4: Comparison of the performance of accuracy for the ECG Images dataset

Fig 4 compares the proposed system's accuracy to existing approaches on the ECG Images dataset. The proposed technique
achieved an accuracy of 87%, which outperformed ANN (76%), SVM (75%), and LSTM (71%). This demonstrates the
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effectiveness of the proposed approach for classifying ECG pictures. Overall, the results show that the proposed technique
is quite effective at diagnosing heart disorders.

Precision
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Fig 5: Comparison of the performance of precision for the ECG Images dataset

Fig 5 presents a comparison of the proposed system's accuracy against existing methods using the ECG Images dataset.
The proposed system achieved an accuracy rate of 87%, outperforming LSTM (70%), ANN (75%), and SVM (71%). This
demonstrates the proposed approach’s ability to accurately identify positive cases in ECG image classification. Overall, the
results emphasize the superior accuracy of the proposed methodology in diagnosing heart disease compared to traditional
methods.

F1 score
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Fig 6: Comparison of the performance of F1-score for ECG Images dataset

Fig 6 compares the proposed system's F1 score to existing approaches on the ECG Images dataset. The suggested system
obtained an exceptional F1 score of 86%, outperforming LSTM (75%), ANN (82%), and SVM (71%). This demonstrates
the proposed method's solid balance of precision and recall in classifying ECG pictures. Overall, the data corroborate the
proposed system's ability to effectively diagnose cardiac issues.
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Fig 7: Specificity performance comparison for the dataset of ECG images

Fig 7 compares the suggested system's specificity with different methods using the dataset of ECG images. The proposed
system achieves a notable specificity of 86%, exceeding the specificity scores of LSTM (78%), ANN (76%), and SVM
(83%). This high specificity indicates the system's effectiveness in correctly identifying true negatives, which is crucial for
accurately diagnosing cardiac conditions. Overall, the results emphasize the proposed system's advantage in minimizing
false positive rates compared to existing approaches.
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Fig 8: Comparison of the performance of sensitivity for ECG Images dataset

Fig 8 compares the proposed system's sensitivity to existing approaches on the ECG Images dataset. The proposed system
attains a notable sensitivity of 82%, outpacing LSTM (76%), ANN (71%), and SVM (76%). This high sensitivity indicates
the system's effectiveness in accurately identifying true positives, which is essential for detecting cardiac conditions.
Overall, the results demonstrate the proposed system's superior performance in recognizing actual cases of heart disease
compared to traditional methods.
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Fig: 9 Training time for ECG Images dataset

Fig 9 compares the training times of different methodson the ECG Images dataset in seconds. LSTM takes around 43
seconds, ANN approximately 41 seconds, SVM about 39 seconds, and the proposed method has the shortest training time
at roughly 32 seconds. The trend shows a gradual decrease in training time from LSTM to the proposed method.
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Fig: 10 Confusion matrix for ECG Images dataset
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Fig 10 shows the performance of a classification model distinguishing between "Normal™ and "Abnormal™ cases. It
correctly predicted 9 normal and 25 abnormal cases, with 5 normal cases misclassified as abnormal and 1 abnormal case

misclassified as normal.
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Fig: 11 ROC curve of AUC score for ECG Images dataset

The model achieves an AUC value of 87% on the ROC curve for the ECG Images dataset, as illustrated in Fig 11, indicating
strong class discrimination. The curve shows strong classification capabilities, demonstrated by a high True Positive Rate

(TPR) and a low False Positive Rate.

Performance Evaluation for ECG Arrhythmia Image Dataset
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Fig 12: Comparison of the performance of accuracy for the ECG Arrhythmia Image dataset

Fig 12 utilizes the ECG Arrhythmia Image dataset to compare the accuracy of the suggested technique with alternative
approaches. The suggested method outperforms LSTM (80%), ANN (75%), and SVM (89%), achieving an impressive
accuracy of 98%. This outstanding result demonstrates how well the suggested technique works to identify arrhythmias in
ECG images. The technique can produce very precise classifications in cardiac exams, according to the results overall.
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Fig13: Comparison of the performance of precision for ECG Arrhythmia Image Dataset

Fig 13 compares the precision of the proposed system against other methods using the ECG Arrhythmia Image dataset.
The proposed system achieves an outstanding precision of 98%, significantly higher than LSTM (84%), ANN (74%), and
SVM (85%). This highlights the proposed system's superior ability to accurately identify true positives in arrhythmia
classifications.
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Fig 14: Comparison of the performance of F1-score for ECG Arrhythmia Image Dataset

Fig 14 compares the F1-score of the proposed system with other methods on the ECG Arrhythmia Image dataset. The
proposed system achieves an impressive F1-score of 97%, significantly higher than LSTM (80%), ANN (82%), and SVM
(88%). This exceptional score reflects the system's excellent balance of precision and recall in detecting arrhythmias.
Overall, the results highlight the proposed method's superior performance in accurately classifying cardiac arrhythmias
compared to existing approaches.

J Rare Cardiovasc Dis. 1185



JOURNAL
OF RARE
CARDIOVASCULAR DISEASES

How to Cite this: Mathan S and Sunil Gupta, et, al. A Medical Expert System for the Diagnosis of Cardiovascular Disease using Integrated DI-LSTM
T-ANFIS Rule-Based Models. J Rare Cardiovasc Dis. 2025;5(S1):1169-1190

1.0
0.9 A
2 0.8 1
S
=
k]
a
v 0.7 1
0.6 A
0.5 - T
LSTM ANN Proposed
Methods

Figl5: Comparison of the performance of specificity for ECG Arrhythmia Image Dataset

Fig 15 compares the specificity of the proposed system with other methods using the ECG Arrhythmia Image dataset. The
proposed system achieves an exceptional specificity of 94%, significantly higher than LSTM (78%), ANN (73%), and
SVM (75%). This indicates the system's strong ability to accurately identify true negatives in arrhythmia classifications.
Overall, the results highlight the proposed method's superior performance in reducing false positive rates compared to

existing approaches.
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Figl6: Comparison of the performance of sensitivity for ECG Arrhythmia Image Dataset

Fig 16 compares the sensitivity of the proposed system with other methods using the ECG Arrhythmia Image dataset. The
proposed system achieves an outstanding sensitivity of 99%, significantly higher than LSTM (85%), ANN (83%), and
SVM (84%). This perfect sensitivity indicates the system's exceptional ability to accurately identify all true positives in
arrhythmia detection. Overall, the results highlight the proposed method's superior performance in detecting cardiac

arrhythmias compared to existing approaches.
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Fig: 17Training time for ECG Arrhythmia Image dataset

Fig 17 shows the training times of different methodsusing the ECG Arrhythmia Image dataset in seconds: LSTM takes
approximately 45.86 seconds, ANN about 43.87 seconds, SVM around 42.91 seconds, and the proposed method achieves
the lowest time at 36.31seconds. The training time decreases progressively across the methods from LSTM to the proposed
approach.
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Fig: 18 Confusion matrix for ECG Arrhythmia Image dataset
Fig 18 shows the performance of a classification model distinguishing between "Normal™ and "Abnormal” cases. It

correctly predicted 11 normal and 24 abnormal cases, with 1 normal cases misclassified as abnormal and 0 abnormal cases
misclassified as normal.
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Fig: 19 ROC curve of AUC Score

Fig 19 displays the ROC curve for the ECG Arrhythmia Image dataset, where the model achieves a perfect AUC score of
100%, indicating excellent class classification. The curve demonstrates strong classification ability, characterized by a high

True Positive Rate (TPR) and a low False Positive Rate (FPR).

Table 3: Performance Comparison of Classification Models

Performance metrics

Accuracy | precision | Recall F1- Specificity | Sensitivity | Training
Methods score time
LSTM 80% 84% 77% 80% 78% 85% 45.86
ANN 75% 74% 75% 82% 73% 83% 43.87
SVM 89% 85% 85% 88% 75% 84% 4291
Proposed 98% 98% 98% 98% 94% 99% 36.31

Table 3 represents a comparison of four models—LSTM, ANN, SVM, and a proposed model across various performance
metrics in a classification task. The proposed model outperforms the other models in terms of accuracy (98%), precision
(98%), recall (98%), and F1 score (98%), indicating a strong balance between correctly identifying positive cases and
minimizing false positives and negatives. It also achieves a higher specificity (94%) and sensitivity (99%), highlighting its
ability to correctly classify both negative and positive cases. Notably, the proposed model also has the shortest training
time (36.31 seconds), suggesting it is not only more accurate but also more computationally efficient than LSTM (45.86),
ANN (43.87), and SVM (42.91). These results suggest the proposed model provides significant improvements in both

predictive performance and training efficiency.

CONCLUSION

In conclusion, this paper presents an innovative T-
ANFIS-based cardiac disease diagnosis system that
efficiently processes ECG signals for identifying and
classifying abnormal heartbeats. The integration of TM-
RFO enhances feature selection by improving
exploration  capabilities,  preventing  premature
convergence to local optima. The DL-LSTM model
addresses the issue of overfitting in sequential data
analysis by introducing dropout, leading to better
generalization. The abnormal signals are further
classified using the T-ANFIS model, which employs
adaptive Trapezoidal membership functions, optimizing

their parameters for improved accuracy in detecting
conditions such as Atrial Fibrillation, Ventricular
Fibrillation, and Bradycardia. The proposed approach
utilizes a T-ANFIS to improve the diagnosis of heart
disease. Simulations were conducted using two datasets:
the MIT-BIH dataset and ECG images specific to cardiac
conditions. The results indicated that the T-ANFIS
model outperformed existing models (LSTM, ANN, and
SVM), achieving accuracy rates of 82%, 83%, and 82%
on the ECG images related to cardiac diseases, and 97%,
97.4%, and 95% on the MIT-BIH dataset, respectively.
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