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INTRODUCTION 
The major cause of death globally is cardiovascular 

diseases (CVDs), which are responsible for millions of 

deaths annually [1]. The diagnosis of heart conditions 

has traditionally relied on electrocardiogram (ECG) 

signals, and better patient outcomes depend on the early 

identification and management of these conditions. 

ECGs provide a non-invasive way to record the electrical 

activity of the heart and are essential for detecting 

abnormalities such as arrhythmias, myocardial 

infarctions, and other cardiac dysfunctions [2]. 

Cardiologists' manual interpretation is the mainstay of 

conventional ECG analysis methods, which can be time-

consuming and prone to human error [3]. However, in 

recent years, there has been a noticeable trend toward 

automating this process through the use of deep learning 

(DL) and machine learning (ML) technologies, which 

have demonstrated great promise in enhancing the 

accuracy and efficacy of cardiac detection systems [4]. 

These sophisticated computational methods use 

algorithms to filter and analyze large, complicated 

datasets, revealing aspects and patterns that human 

observers might not see right away. 

 

A cardiac diagnosis system that incorporates ML and DL 

models can vastly improve the diagnostic workflow. The 

process begins with data acquisition, where ECG signals 

are captured from patients using sensors and other 

monitoring devices. Due to several variables, including 

patient mobility and interference from other electronic 

devices, this raw data frequently contains noise and 

artifacts [5]. To guarantee that only pertinent data is input 

into the algorithms, preprocessing is therefore an 

essential step that entails removing noise and 

standardizing the data. Once the data is preprocessed, 

feature extraction is performed to identify key 

characteristics of the ECG signals that are indicative of 

specific cardiac conditions. Traditionally, this involved 

manual extraction of features like heart rate, QRS 

complex duration, and ST segment deviation. However, 

with deep learning, feature extraction can be automated, 

allowing models to learn and identify complex features 

directly from the data [6]. 

 

The classification of ECG signals has heavily relied on 

machine learning techniques including k-nearest 

neighbors (KNN), random forests, and support vector 

machines (SVM). SVM operates by determining the best 

hyperplane to divide various data classes, and it is very 

useful for binary classification applications. While 

random forests are resistant to overfitting, they are 

ensemble approaches that use several decision trees to 

handle high-dimensional data and enhance classification 

accuracy [7]. KNN classifies data points based on their 

proximity to other labeled data points, and while simple, 

it can be effective in distinguishing between different 

types of arrhythmias. Despite their effectiveness, these 

traditional ML algorithms require manual feature 

engineering and are often limited in their ability to 

handle complex, high-dimensional data [8]. 
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Abstract:    This research presents a deep learning framework for the diagnosis of heart disease. 
The proposed model combines a Dropout-layer Induced Long Short-Term Memory (DI-LSTM) network 
with a Trapezoidal-based Adaptive Neuro-Fuzzy Inference System (T-ANFIS).The objective of this 
combination is to improve the computational efficiency and the diagnostic accuracy. Firstly, the ECG 
signals pre-processed and decomposed by removing baseline drift and smoothing. Then the most 
relevant features such as statistical properties, time-related factors, amplitude measurements, and 
pulse characteristics are extracted. We optimize these features with a Dent Map-based Red Fox 
Optimization (TM-RFO) algorithm, which improves search capabilities and avoids getting stuck in local 
minima by using Dent Map dynamics. The improved feature set is fed into a DI-LSTM framework. 
Dropout layers are used to improve generalization and prevent overfitting. This allows for binary 
classification of signals as normal or abnormal. If signals are abnormal, they go through a secondary 
classification using the T-ANFIS framework. To handle complex data patterns and identify conditions 
such as atrial fibrillation (AFib), ventricular fibrillation (VFib), and bradycardia, we use structural 
adaptive trapezoidal membership functions. Our framework shows that it performs better in terms of 
sensitivity, specificity, recall, accuracy, and precision metrics compared to existing methods. 
 

Keywords: Dropout-layer Induced Long Short-Term Memory, Tent Map-based Red Fox 
Optimization, Trapezoidal Adaptive Neuro-Fuzzy Inference System, deep neural network, Cardiac 
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Deep learning models come into play here, offering 

significant advantages over traditional methods. For 

example, Convolutional Neural Networks (CNNs) are 

particularly well-suited for processing and evaluating 

ECG signals because they can automatically learn 

hierarchical properties from raw data. To accurately 

categorize cardiac illnesses, CNNs are composed of 

multiple layers that recognize patterns [8], such as 

shapes, edges, and higher-level characteristics.Because 

they are designed to handle sequential data, recurrent 

neural networks (RNNs), including Long Short-Term 

Memory (LSTM) networks, are ideal for processing 

time-series data, including ECG signals. The ability of 

LSTMs to identify patterns over time and capture long-

term interdependence is crucial for diagnosing illnesses 

with temporal variability [9]. 

 

Deep learning techniques like autoencoder are employed 

for unsupervised learning tasks like dimensionality 

reduction and feature extraction. They acquire 

condensed representations of ECG signals, which can 

subsequently be applied to tasks involving anomaly 

detection or classification [10]. Deep learning models' 

automatic feature extraction capabilities lessen the need 

for human input and make it possible to find intricate 

linkages and subtle patterns in the data. Deep learning 

models are also very useful tools in the context of cardiac 

diagnostics since they can be trained on vast datasets to 

increase their prediction accuracy and generalization 

skills [11]. 

 

Heart disease datasets are crucial for the creation and 

evaluation of these complex cardiac detection 

algorithms. These sets often include annotated 

electrocardiograms from both healthy individuals and 

patients with various heart conditions. 

PhysioNet/Computing in Cardiology Challenge 

databases, the MIT-BIH Arrhythmia Database, and the 

PTB Diagnostic ECG Database are just a few of the well-

known datasets that researchers can use to train and test 

machine learning models [12].The MIT-BIH Arrhythmia 

Database, for instance, has over 48 half-hour snippets of 

two-channel ambulatory ECG recordings that are labeled 

with various types of arrhythmias to develop robust 

classification algorithms. The availability of such 

extensive datasets makes it possible to rigorously test and 

validate machine learning models, guaranteeing their 

correctness and dependability in actual clinical settings. 

 

There are many advantages of integrating ML and DL in 

cardiac diagnostic systems. First of all, by analyzing 

ECG signals almost instantly, these devices can 

drastically cut down on the amount of time needed for 

diagnosis and facilitate quicker clinical decision-making. 

In emergency cases where prompt diagnosis and 

treatment are crucial, this is especially crucial [13]. 

Second, the computerized analysis frees up medical staff 

to concentrate on more complicated cases that call for 

human knowledge.Furthermore, by improving 

diagnostic precision, deep learning and machine learning 

models can reduce the likelihood of misdiagnosis and 

false positives.These tools improve the accuracy of 

cardiac diagnosis, which eventually improves patient 

outcomes, by spotting minute patterns and abnormalities 

that human observers might miss. But putting these 

technologies into practice is not without its difficulties. 

Access to sizable, superior datasets that are 

representative of many patient populations is necessary 

for the creation of successful machine-learning models 

[14]. Another big worry is making sure that data is secure 

and private, especially when it comes to private medical 

data.The incorporation of models based on machine 

learning and deep learning into the existing healthcare 

infrastructure requires thorough evaluation and 

coordination by technology developers, clinicians, and 

regulatory bodies to ensure seamless adoption and 

conformity to medical norms [15].Despite these 

challenges, ML for cardiac diagnostics have huge 

potential benefits, and more research and development in 

this field should lead to significant advancements in the 

diagnosis and treatment of heart diseases. The main 

contributions of this study are summarized as follows:   

 This work combines a deep neural network uses 

DI-LSTM model and T-ANFIS, leveraging the 

strengths of both models for accurate and 

efficient cardiac disease diagnosis from ECG 

signals. 

 TM-RFO is used to identify features efficiently, 

enhance exploration, and stay clear of local 

optima. 

  To improve generalization and decrease 

overfitting when classifying ECG signals as 

normal or abnormal, the DI-LSTM network is 

implemented. 

 The suggested model performs better than 

current methods, categorizing cardiac diseases 

with greater accuracy, precision, recall, 

sensitivity, and specificity. 

The document's remaining sections are organized as 

follows. Cardiovascular disease prediction was covered 

in Section 2. Section 3 describes the proposed T-ANFIS 

model. Section 4 presents the results of experiments 

conducted using the datasets. Section 5 concludes the 

current study work. 

 

Related work 
Karthik et al. [16] developed an automated algorithm 

based on deep learning for identifying 1D bio ECG 

signals to diagnose cardiovascular disease.The DLECG-

CVD model has several operational steps, including pre-

processing, feature extraction, hyperparameter tuning, 

and classification. Data pre-processing is the initial step 

in transforming the ECG results into actionable 

information and getting them ready for further analysis. 

A deep belief network (DBN) model is then used to 

produce a set of feature vectors. To optimize the 

hyperparameters of the DBN model, the Improved 

Swallow Swarm Optimization (ISSO) technique is 

employed. Lastly, the test ECG data is given the proper 

class labels using the Extreme Gradient Boosting 
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classifier. The benchmark PTB-XL dataset was used in 

simulations to validate the improved diagnostic 

performance of the DLECG-CVD model. The model 

showed gains in kappa, Matthew correlation coefficient, 

accuracy, sensitivity, specificity, and hamming loss after 

a thorough comparison examination. 

 

Abubaker et al. [17] created a new lightweight CNN 

design that outperformed current state-of-the-art 

techniques in cardiovascular disease categorization, 

increasing the accuracy rate to 98.23%. The model may 

run on a single CPU, circumventing computing power 

constraints, and this was accomplished using a collection 

of ECG scans from cardiac patients.Furthermore, a 

significant improvement in classification accuracy was 

obtained when the proposed method was used as a 

feature extraction tool for traditional machine learning 

techniques. For instance, the Naïve Bayes algorithm 

achieved an accuracy of 99.79%. This approach can be 

included in the healthcare IoT ecosystem, encouraging 

other AI researchers to look at cutting-edge methods for 

cardiovascular disease diagnostics. 

 

Mhamdi et al. [18] created algorithmic models for 

analyzing ECG tracings to predict cardiovascular 

disorders to save lives and enhance healthcare at a 

reduced cost. As the cost of healthcare and insurance 

rises globally, this work holds enormous promise for 

offering life-saving and reasonably priced solutions. A 

validation accuracy of approximately 0.95 was attained 

by the MobileNetV2 and VGG16 algorithms following a 

thorough testing process to adjust deep learning settings. 

Accuracy marginally dropped to 0.94 and 0.90 when 

MobileNetV2 and VGG16 were installed on a Raspberry 

Pi. The primary objective of this study was to enhance 

real-time monitoring easily and economically using 

smart mobile technologies such as smartphones, 

smartwatches, and connected T-shirts. 

 

Daydulo et al. [19] created an automated deep-learning 

algorithm that can correctly categorize ECG data into 

three groups: cardiac arrhythmia (ARR), congestive 

heart failure (CHF), and normal sinus rhythm (NSR). 

This was accomplished by pre-processing and 

segmenting ECG data from the MIT-BIH and BIDMC 

databases that are accessible on PhysioNet before the 

model being trained. Pre-trained models, including 

ResNet 50 and Alex Net, were set up and tweaked to 

provide the best classification results. The proposed deep 

learning model demonstrated an overall classification 

accuracy of 99.2% on the test data, with an average 

sensitivity of 99.2%, specificity of 99.6%, and precision, 

F-measure, and recall of 99.2%. 

 

Ram et al. [20] used three deep learning models—

Multilayer Perceptron’s (MLPs), Deep Belief Networks 

(DBNs), and Restricted Boltzmann Machines (RBMs)—

as well as electrocardiogram (ECG) signals as the main 

data source in order to identify heart disorders. Their 

model was trained and evaluated using the MIT-BIH and 

PTB-ECG datasets, which are both publically available. 

In comparison to earlier models, the hybrid model 

demonstrated remarkable accuracy, achieving 98.6%, 

97.4%, and 96.2% on the MIT-BIH dataset and 97.1%, 

96.4%, and 95.3% on the PTB-ECG dataset, 

respectively. Furthermore, the robustness of the 

suggested method was shown by high F1 scores and 

AUC values. 

 

Problem statement 

 The identification and separation of distinct heart disease types is a crucial gap in many current approaches used 

in the context of cardiac illness detection systems. The accuracy and efficacy of diagnosis and therapy may be 

severely impacted by this disparity. 

 Existing heart disease diagnosis systems may struggle with accurate classification due to their inability to 

effectively handle and integrate different types of datasets.  

 The existing systems may not effectively select and prioritize relevant features from diverse datasets, leading to 

the inclusion of irrelevant or redundant features that adversely affect model performance. 

 Multiple sources of high-dimensional data may cause overfitting, in which the classification model picks up noise 

and particular training data patterns instead of broadly applicable patterns. When applied to fresh, untested data, 

this leads to decreased accuracy. 

 

Table 1: Evaluation of current methods for diagnosing CVD in comparison 

Author Dataset Methods Accuracy Limitation 

Karthik et al. [16] PTB-XL dataset DLECG-CVD 

model 

The DLECG-CVD 

model achieved a 

high accuracy rate in 

diagnosing 

cardiovascular 

diseases from ECG 

signals. 

The DLECG-CVD model's 

reliance on the PTB-XL 

dataset limits its 

generalizability. 

 

Abubaker et al. [17] ECG Images 

Dataset of Cardiac 

Patients 

Lightweight CNN At 98.23%, the 

lightweight CNN 

architecture 

obtained a 

The model's reliance on one 

dataset limits its 

applicability to other 

populations. 
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remarkable 

accuracy rate. 

Mhamdi et al. [18] Training and testing 

dataset 

Mobile Net V2 and 

VGG16 algorithms 

The proposed model 

achieves 95% 

The model may not perform 

effectively for all types of 

cardiac arrhythmias. 

Daydulo et al. [19] MIT-BIH and 

BIDMC databases 

Deep learning 

model 

99.2% accuracy is 

attained with the 

deep learning 

model. 

Less reliable 

Ram et al. [20] MIT-BIH, PTB-

ECG dataset 

HybDeepNet model HybDeepNet Model 

achieves an 

accuracy of 98.6%. 

More diverse datasets 

 

Proposed Methodology for Cardiac Disease Diagnosis System 

This paper presents an advanced cardiac disease diagnosis system that combines an Enhanced deep neural network using 

a DI-LSTM network and a T-ANFIS, utilizing patient ECG signals as input. Initially, the ECG signals are decomposed and 

pre-processed to eliminate baseline wandering and smooth the data, preparing it for beat feature extraction. For feature 

selection, the system uses the Tent Map-based Red Fox Optimization (TM-RFO) algorithm, which enhances exploration 

capabilities in complex search landscapes by integrating chaotic dynamics, allowing the algorithm to bypass local optima 

without relying on gradients. The selected features are then fed into a deep neural network using a DI-LSTM network, 

tailored for managing sequential data and minimizing overfitting through the random dropout of units during training, 

which improves generalization. If the model detects an abnormal heartbeat, the data is further analyzed using T-ANFIS. 

This model leverages adaptive trapezoidal membership functions that fine-tune during training to capture intricate data 

distributions accurately. T-ANFIS classifies specific cardiac conditions, including Atrial Fibrillation (AFib), Ventricular 

Fibrillation (VFib), and Bradycardia. The system’s performance is evaluated against existing methodologies using various 

quality metrics. Fig. 1 depicts a block schematic of the suggested approach. 

 

 
 

Fig 1: The suggested cardiac disease diagnosis system's block diagram 

 

Raw ECG signals 

ECG images from cardiac diseases and raw ECG signals  tx  from the MIT-BIH collection offer a wealth of labeled ECG 

recordings of the heart's electrical activity throughout time. These signals, which are obtained from patients using 

conventional electrodes applied to the skin, may contain baseline drift, noise, and artifacts for a variety of causes. 

 

Signal decomposition   

The acquired ECG signal  tx  can be decomposed into various components using techniques.  

The Hilbert transform is a mathematical operation that transforms a real-valued function (signal) into another function that 

provides important information about the original signal, specifically its instantaneous amplitude and phase. It is widely 
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used in signal processing, communications, and various fields of engineering and physics. It  tx  is the input ECG signal, 

the Hilbert transform   tx is given by, 

  
 







d

t

x
VPtx 



 
 ..

1
     (1) 

Where P.V denotes Cauchy's principal valuewhich is needed due to the singularity at t ,   tx  Hilbert 

transform  tx . 

 

Pre-processing 

In this pre-processing, baseline wandering removal is performed and then the signal is smoothened. 

 

Baseline Wandering Removal 

Baseline wandering refers to slow variations in the ECG signal caused by patient movement or respiration, which is 

removed using a high-pass filter. The cut-off frequency of the filter cf is typically between 0.5-0.7 Hz to remove low-

frequency noise while preserving important ECG features. The high-pass filter function  fH  is expressed as: 

 
22

cff

f
fH


      (2) 

Where cf the cut-off frequency of the filter (around 0.5 Hz for ECG), f  is the signal frequency,  fH  the 

frequency response of the filter at frequency f . 

 

Signal Smoothing 

After baseline wandering is removed, the ECG signal is further smoothened using a Gaussian filter to remove noise. The 

Gaussian function is defined as,  

 
2

2

2

22

1




t

etG


      (3) 

 

Where  is the standard deviation, t is the time variable. Convolving the ECG signal with this filter reduces high-

frequency noise while preserving the essential features. 

 

Feature extraction  

After pre-processing, beat features(R-peak detection, RR intervals, QRS detection, heart rate variability (HRV), mean and 

standard of RR intervals), Amplitude features (max amplitude and min amplitude), statistical features (mean, standard 

deviation, kurtosis and skewness) and time domain features (rms, signal energy and no of peak) and other ECG signal 

characteristics are extracted. These features form a feature vector F : 

  nfffF ,.....,, 21       (4) 

Where if represents a specific feature extracted from the ECG signal.  

 

Feature selection using TM-RFO 

For this feature selection process, the extracted features F  are selected using the TM-RFO algorithm.The existing RFO 

[21] algorithm is notable for its simplicity and speed, as it does not require gradient information, which distinguishes it 

from many other optimization methods. However, RFO tends to converge prematurely to local optima, particularly in 

complex, multimodal landscapes where it can be difficult to differentiate between local and global optima. The proposed 

TM-RFO is an enhanced optimization technique that integrates the RFO algorithm with the Tent Map to improve the 

exploration capabilities of the algorithm, especially in complex, multimodal search spaces.To avoid early convergence to 

local optima, this feature selection approach seeks to identify the most pertinent features from the feature vector. 

In feature selection, the goal is to find an optimal subset of features XS  from the feature set 

 .,....,, 321 nxxxxX  the objective is to maximize classification performance with the fewest possible features to 

reduce complexity and increase model interpretability. The optimization is represented by an objective function  .SJ  

  SSAccSJ
XS

.)(max 


    (5) 
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Where S several features,  are a regularization parameter to penalize a larger subset. 

 

Initialize the population of foxes 

Each individual in the TM-RFO population, called a fox represents a candidate subset of features, encoded as a binary 

vector  iniii PPPP ,...,, 2, . 

 The algorithm initializes a population of N foxes by randomly assigning binary values to the elements in each 

vector iP . This random initialization creates diverse candidate solutions, covering different portions of the feature space.  

For each fox iP , the fitness is evaluated using the objective function: 

    iii PPAccPJ .     (6) 

Where  iPAcc is the classification performance using the feature represented by iP , is a regularization parameter, and 

iP is the count of selected features. 

 

Exploitation and Exploration Phases in TM-RFO 

The TM-RFO algorithm alternates between two phases’ exploitation (local search) and exploration (global search). This 

alternating approach enables the algorithm to refine promising solutions while exploring the search space broadly to avoid 

premature convergence. 

 

Exploitation Phase (Local Search) 

In the exploitation phase, the algorithm performs a local search around high-fitness solutions. Small changes or “mutations” 

are made to the fox’s position vector iP , which may involve flipping one or a few bits (i.e., selecting or deselecting a small 

number of features). 

For instance, with a small probability , each element ijp is updated as: 





 



otherwisep

numberrandomaifp
p

t

ij

t

ijt

ij
,

,1
1

     (7) 

 

This local flipping enables minor adjustments around the current subset, allowing the algorithm to fine-tune its selection 

to improve fitness. 

 

Exploration Phase (Global Search using Tent Map) 

In the exploration phase, the algorithm uses the Tent Map to introduce chaotic behavior, enhancing its ability to explore 

the search space and avoid local optima. 

The tent map  xT is defined as: 

 
  













.15.0,12

,5.00,2

xifx

xifx
xT     (8) 

This chaotic function generates values in the interval (0, 1), providing non-linear, unpredictable sequences that enhance 

global exploration. 

 

Update Positions Using Tent Map Dynamics 

The tent map introduces chaotic sequences into the position updates of each fox, facilitating large, random-like jumps in 

the feature space. currentx Represents the current position of the fox, the tent map generates a new value  currentxT , and 

the updated position newx is calculated as: 

 currentcurrentnew xTxx .      (9) 

 

Where  is a scaling factor that controls the influence of the Tent Map on the position update, currentx the previous value 

of the same vector, newx represents the updated or new value of a variable. Since feature selection is binary, the continuous 

positions generated by the Tent Map are mapped back to binary format by applying a threshold. 
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This chaotic, binary flipping ensures each fox’s position remains in the binary format required for feature selection. 

 

Fitness evaluation of updated population: 

After updating each fox position, the fitness function is recalculated for the new subset. For each fox :1t

iP  

    111 .   t

i

t

i

t

i PPAccPJ      (11) 

Where the classification accuracy using the subset of features measures  1t

iPAcc  indicated by
1t

iP , and 
1t

iP counts 

the selected features.The best fitness  SJ *
observed so far is recorded, and the fox associated with this fitness is updated 

as the current best solution. 

 

Convergence Criteria 

The TM-RFO algorithm keeps switching between the exploration and exploitation stages until a halting condition is 

satisfied. Common standards consist of: 

 The number of iterations reaches a maximum. 

 The best fitness does not significantly improve over successive iterations. 

When the algorithm converges, the solution with the highest fitness is chosen as the final subset of selected features. 

 

Optimal feature subset 

 The final output is the feature subset 
*S that yields the best fitness, balancing high classification accuracy with a 

minimal number of features. The final subset is expressed as,  

  SSAccS
XS

.maxarg* 


     (12) 

 

Where 
*S is subsequently used in model training for classification task  s, represents the regularization 

parameterbenefitting from reduced computational cost and improved interpretability. 

 

Classification using DI-LSTM 

The selected features are fed into the DI-LSTM model. The existing LSTMs [22] are a type of RNN designed to capture 

long-range dependencies in sequential data. Unlike traditional RNNs, LSTMs are better at retaining information over 

longer sequences due to their unique memory structure. Traditional LSTM networks [22] are optimized for handling 

sequential data, making them effective for such tasks; however, they contain numerous parameters due to their architecture, 

which includes input, forget, and output gates, along with cell states. The proposed deep neural network enhances this 

approach by incorporating DI-LSTMnetwork with four LSTM layers, followed by dropout regularization, a flattening 

layer, a fully connected (dense) layer, and an output layer for classification or regression.  Fig 2 illustrates the construction 

of a deep neural networkarchitecture with DI- LSTM. 
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Fig 2: Deep Neural Network Architecture with Dropout Induced LSTM 

 

Input layer 

Let the selected features be represented as a vector 
n

t Rx  at each time step ,t where the number of selected features is

n . These features are sequentially fed into the LSTM network over time. 

 

LSTM Layer 

An LSTM cell is made up of four main parts: the input gate, the output gate, the forget gate, and the cell state. Each LSTM 

cell uses the equations listed below to update its internal configuration and output at any given time: 

a. Forget gate 

  
fttft bxhWf   ,. 1      (13) 

 Here, tf decides which data from the prior cell state 1tC  should be kept.  is the activation sigmoid 

function, 
fW  and fb is the forget gate's weights and biases. 

b. Input gate: 

The input gate ti selects which value should be changed in the cell state. It is calculated as: 

  ittit bxhWi   ,. 1      (14) 

Where tx  denotes the input at the current time step t , 1th the hidden state at the previous time step  1t , and iW

the input gate's weight matrix. ib Is the bias term for the input gate and  stands for the sigmoid activation function. 

c. Candidate cell state 

The candidate cell state tC


introduces a collection of new values that can be added to the input gate-controlled cell state. 

It's computed as: 

  cttCt bxhWC   ,.tanh 1


     (15) 

Where tanh is the hyperbolic tangent activation function, CW  is the weight matrix for generating the candidate cell 

state, Cb and is the bias term for the candidate cell state. 

d. Cell state  update 

The cell state tC is then updated by combining the previous cell state 1tC and the candidate cell state tC


, controlled by 

the forget gate tf and input gate ti . It is calculated as: 

The cell state tC  is then updated by merging the previous 1tC and candidate cell state tC


, which are regulated by the 

forget gate tf  and input gate ti . It's computed as: 

ttttt CiCfC


** 1        (16) 

Where *represents elements-wise multiplication. This equation allows the cell state to retain information as 

needed while incorporating new information.  

e. Output gate 

The output gate tO determines whether aspects of the state of the cell should be transferred to the next hidden state. It's 

computed as: 

  ottot bxhWo   ,. 1      (17) 

Where, oW is the weight matrix for the output gate, 1th represents the hidden state at the previous time step  1t , 

ob and is the bias term for the output gate. 

f. Hidden state 

The hidden state th  is updated by modifying the output gate to to the current cell state tC . It is calculated as: 

 ttt Coh tanh*      (18) 

Where th represents the hidden state at a time step t , to represents the output gate value at the time step t ,  tCtanh is 

the hyperbolic tangent function applied to the cell state at the time step t . 
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Dropout layer 

Dropout regularization is applied after each LSTM layer to prevent overfitting. It randomly sets a fraction p of the input 

units to zero during training. Dropout maskis applied after each LSTM layer to prevent the network from becoming overly 

reliant on specific neurons. The mathematical operation for dropout at each time step is: 

ttt hMh .ˆ       (19) 

 

Where,  pBernouliM t ~ is a binary mask with a probability p of retaining the neuron, th is the output of the LSTM 

layer, tĥ is the output after dropout. 

 

Dense layer 

The fully connected layer is used to transform the features extracted by the LSTM layers into the final output. For this 

layer, we have an input vector ĥ from the last LATM layer and it is mapped to an output vector using weight matrix dW

and bias vector by db . 

 dtd bhWy  .     (20) 

 

Where y represents the output of a neural network layer, dW represents a weight matrix that connects the input th  to the 

output y , db bias term that is added to the weighted sum of the inputs. 

 

Output layer 

For classification tasks, logits are transformed into probabilities by the output layer's softmax activation. 

 ysofty max


    (21) 

 

Where y  represents the input to the softmax function, y


represents the output of a neural network layer. 

 

Cardiac Disease Classification using T-ANFIS 

The features extracted from an abnormal ECG signal are fed into the T-ANFIS to identify the specific type of cardiac 

disease. Traditional ANFIS models [23] merge neural networks with fuzzy logic, allowing them to effectively manage 

complex systems, including nonlinear relationships and uncertainties. However, conventional membership functions are 

predefined and may not adequately represent complex or unusual data distributions. While fuzzy logic offers some level 

of adaptability, it may not be sufficient for all data types. The proposed T-ANFIS utilizes trapezoidal membership functions 

that dynamically adjust their shapes based on the training data. By integrating machine learning techniques, T-ANFIS 

optimizes these parameters to enhance classification accuracy. 

Input layer 

The T-ANFIS system takes abnormal ECG data as input. These features are represented  ,,.....,, 21 nxxxX  where 

each ix represents features related to heart activity, Such as RR intervals, QRS duration, etc. These input features form the 

basis for diagnosing specific types of cardiac abnormalities. 

 

Fuzzification layer 

This layer utilizes membership functions to convert sharp input values into fuzzy values. In T-ANFIS, trapezoidal 

membership functions are used due to their ability to represent imprecise data effectively.The trapezoidal membership 

function for an input x  can be defined as: 
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0

1

0

      (22) 

Where A is a fuzzy set defined by the parameters dcba ,,, ? 

 

Rule layer  

This layer's nodes each stand for a fuzzy rule. Each node's output is calculated by multiplying its input membership values.  

   21 . xxw BiAii        (23) 

Where iw signifies the rule's firing strength i ,  1xAi  is amembership function for the variable 1x  in a fuzzy 

set iA ,  2xBi  is amembership function for the variable 2x  in a fuzzy set iB . 

For the rules of the form: 

iii BisxandAisxIfR 21:      (24) 

 

Normalization layer 

The firing strengths ,iw from the previous layer are normalized to produce relative weights for each rule. The normalized 

firing strength iw


is computed as: 

 


N

j j

i

i

w

w
w

1


     (25) 

 

Where iw represents the normalized or weighted value of iw , iw is the original value of the
thi  element in a set of values.

N Is the number of rules. 

 

Defuzzification layer 

This layer outputs the weighted consequence of each rule using a linear function of the inputs. For a given rule i , the 

defuzzified output iz  is defined as: 

 iiiii rxqxpwz  21.


    (26) 

Where ,, ii qp and ir are the consequent parameters for the rule .i  

 

Output layer 

The sum of the contributions made by each rule produces the outcome: 

 iii

N

i

i

N

i

i rxqxpwzF  


21

11

.


    (27) 

This output F represents a continuous value that can be interpreted as the probability of a specific cardiac disease. TheT-

ANFIS modelutilizes the learned fuzzy rules to classify the input features such as normal, AFib, VFib, or Bradycardia. 

 

RESULT AND DISCUSSION 
The cardiac disease detection system based ondeepneural network model for DI-LSTM and the T-ANFIS has been verified. 

The performance of the suggested technique was compared to that of LSTM [22], ANN [24], and SVM [25]. The 

implementation results were generated using Intel Core i7 CPUs operating at 1.6 GHz and the Python platform. 

 

Dataset description  
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This dataset contains images produced from ECG recordings and is specifically designed for the research of heart diseases. 

The images are classified according to various heart states, enabling for classification tasks and the study of cardiac diseases 

[28]. 

  
(a) (b) 

 
 

(c) (d) 

Fig3:Pre-processing phases of an ECG signal for the ECG Images dataset (a) sample 1(b) Sample 2 (c) Sample 

3(d) Sample 4 

 

Fig 3 illustrates the pre-processing stages of an ECG signal for the ECG Images dataset of Cardiac Patients analysis. The 

first plot shows the original ECG signal with its raw amplitude variations over time. The second plot presents the amplitude 

envelope of the ECG signal, extracted using the Hilbert Transform, which highlights the signal's amplitude variations more 

clearly, making it easier to analyze peak patterns. The third plot displays the ECG signal after baseline wandering removal, 

which corrects low-frequency shifts, stabilizing the baseline and improving signal clarity. The final plot shows the 

smoothed ECG signal, where noise and small fluctuations are reduced to provide a cleaner signal, emphasizing the primary 

waveform features critical for accurate feature extraction and further analysis. 
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ECG Arrhythmia Image Dataset 

Arrhythmia ECG Using deep neural network architectures, image datasets have been used to investigate heartbeat 

categorization and observe some of the transfer learning capabilities. The signals match the heartbeat forms on an ECG in 

both normal and arrhythmia- and myocardial infarction-affected situations. Each segment of these pre-processed and 

segmented data represents a heartbeat [29]. 

 

Performance metrics 

Performance can be assessed using a variety of criteria, including sensitivity, specificity, F1-score, accuracy, precision, 

recall, and recall.  We employ the statistical indicators given in this section to evaluate the efficacy of our proposed 

approach. The metrics computed include true positive (TP), true negative (TN), false positive (FP), and false negative (FN).  

Table 1 shows the computations for several performance metrics. 

Table 2: Performance metrics 

Performance Measures Formula 

Accuracy 

FP)FNTP(TN

TP)TN(




 

Precision 

 FPTP

TP


 

Recall 

 FPTP

TP


 

F1-Score 

RP

PR
F




2
 

Sensitivity 

FNTP

TP


 

Specificity 

FPTN

TN


 

AUC 













 FPTN

TN

FNTP

TP

2

1
 

 

Performance Evaluation for ECG Images Dataset 

 
Fig 4: Comparison of the performance of accuracy for the ECG Images dataset  

 

Fig 4 compares the proposed system's accuracy to existing approaches on the ECG Images dataset. The proposed technique 

achieved an accuracy of 87%, which outperformed ANN (76%), SVM (75%), and LSTM (71%). This demonstrates the 
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effectiveness of the proposed approach for classifying ECG pictures. Overall, the results show that the proposed technique 

is quite effective at diagnosing heart disorders. 

 
Fig 5: Comparison of the performance of precision for the ECG Images dataset 

 

Fig 5 presents a comparison of the proposed system's accuracy against existing methods using the ECG Images dataset. 

The proposed system achieved an accuracy rate of 87%, outperforming LSTM (70%), ANN (75%), and SVM (71%). This 

demonstrates the proposed approach's ability to accurately identify positive cases in ECG image classification. Overall, the 

results emphasize the superior accuracy of the proposed methodology in diagnosing heart disease compared to traditional 

methods. 

 

 
Fig 6: Comparison of the performance of F1-score for ECG Images dataset 

 

Fig 6 compares the proposed system's F1 score to existing approaches on the ECG Images dataset. The suggested system 

obtained an exceptional F1 score of 86%, outperforming LSTM (75%), ANN (82%), and SVM (71%). This demonstrates 

the proposed method's solid balance of precision and recall in classifying ECG pictures. Overall, the data corroborate the 

proposed system's ability to effectively diagnose cardiac issues. 
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Fig 7: Specificity performance comparison for the dataset of ECG images 

 

 

Fig 7 compares the suggested system's specificity with different methods using the dataset of ECG images.  The proposed 

system achieves a notable specificity of 86%, exceeding the specificity scores of LSTM (78%), ANN (76%), and SVM 

(83%). This high specificity indicates the system's effectiveness in correctly identifying true negatives, which is crucial for 

accurately diagnosing cardiac conditions. Overall, the results emphasize the proposed system's advantage in minimizing 

false positive rates compared to existing approaches. 

 

 
Fig 8: Comparison of the performance of sensitivity for ECG Images dataset 

 

Fig 8 compares the proposed system's sensitivity to existing approaches on the ECG Images dataset.The proposed system 

attains a notable sensitivity of 82%, outpacing LSTM (76%), ANN (71%), and SVM (76%). This high sensitivity indicates 

the system's effectiveness in accurately identifying true positives, which is essential for detecting cardiac conditions. 

Overall, the results demonstrate the proposed system's superior performance in recognizing actual cases of heart disease 

compared to traditional methods. 
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Fig: 9 Training time for ECG Images dataset 

 

Fig 9 compares the training times of different methodson the ECG Images dataset in seconds. LSTM takes around 43 

seconds, ANN approximately 41 seconds, SVM about 39 seconds, and the proposed method has the shortest training time 

at roughly 32 seconds. The trend shows a gradual decrease in training time from LSTM to the proposed method. 

 

 
Fig: 10 Confusion matrix for ECG Images dataset 

 

Fig 10 shows the performance of a classification model distinguishing between "Normal" and "Abnormal" cases. It 

correctly predicted 9 normal and 25 abnormal cases, with 5 normal cases misclassified as abnormal and 1 abnormal case 

misclassified as normal. 
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Fig: 11 ROC curve of AUC score for ECG Images dataset 

 

The model achieves an AUC value of 87% on the ROC curve for the ECG Images dataset, as illustrated in Fig 11, indicating 

strong class discrimination. The curve shows strong classification capabilities, demonstrated by a high True Positive Rate 

(TPR) and a low False Positive Rate. 

 

Performance Evaluation for ECG Arrhythmia Image Dataset 

 
Fig 12: Comparison of the performance of accuracy for the ECG Arrhythmia Image dataset 

 

Fig 12 utilizes the ECG Arrhythmia Image dataset to compare the accuracy of the suggested technique with alternative 

approaches. The suggested method outperforms LSTM (80%), ANN (75%), and SVM (89%), achieving an impressive 

accuracy of 98%. This outstanding result demonstrates how well the suggested technique works to identify arrhythmias in 

ECG images. The technique can produce very precise classifications in cardiac exams, according to the results overall. 
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Fig13: Comparison of the performance of precision for ECG Arrhythmia Image Dataset 

 

Fig 13 compares the precision of the proposed system against other methods using the ECG Arrhythmia Image dataset. 

The proposed system achieves an outstanding precision of 98%, significantly higher than LSTM (84%), ANN (74%), and 

SVM (85%). This highlights the proposed system's superior ability to accurately identify true positives in arrhythmia 

classifications. 

 

 
Fig 14: Comparison of the performance of F1-score  for ECG Arrhythmia Image Dataset 

 

Fig 14 compares the F1-score of the proposed system with other methods on the ECG Arrhythmia Image dataset. The 

proposed system achieves an impressive F1-score of 97%, significantly higher than LSTM (80%), ANN (82%), and SVM 

(88%). This exceptional score reflects the system's excellent balance of precision and recall in detecting arrhythmias. 

Overall, the results highlight the proposed method's superior performance in accurately classifying cardiac arrhythmias 

compared to existing approaches. 
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Fig15: Comparison of the performance of specificity for ECG Arrhythmia Image Dataset 

 

Fig 15 compares the specificity of the proposed system with other methods using the ECG Arrhythmia Image dataset. The 

proposed system achieves an exceptional specificity of 94%, significantly higher than LSTM (78%), ANN (73%), and 

SVM (75%). This indicates the system's strong ability to accurately identify true negatives in arrhythmia classifications. 

Overall, the results highlight the proposed method's superior performance in reducing false positive rates compared to 

existing approaches. 

 

 
Fig16: Comparison of the performance of sensitivity for ECG Arrhythmia Image Dataset 

 

Fig 16 compares the sensitivity of the proposed system with other methods using the ECG Arrhythmia Image dataset. The 

proposed system achieves an outstanding sensitivity of 99%, significantly higher than LSTM (85%), ANN (83%), and 

SVM (84%). This perfect sensitivity indicates the system's exceptional ability to accurately identify all true positives in 

arrhythmia detection. Overall, the results highlight the proposed method's superior performance in detecting cardiac 

arrhythmias compared to existing approaches. 
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Fig: 17Training time for  ECG Arrhythmia Image dataset 

 

Fig 17 shows the training times of different methodsusing the ECG Arrhythmia Image dataset in seconds: LSTM takes 

approximately 45.86 seconds, ANN about 43.87 seconds, SVM around 42.91 seconds, and the proposed method achieves 

the lowest time at 36.31seconds. The training time decreases progressively across the methods from LSTM to the proposed 

approach. 

 

 
Fig: 18 Confusion matrix for ECG Arrhythmia Image dataset 

 

Fig 18 shows the performance of a classification model distinguishing between "Normal" and "Abnormal" cases. It 

correctly predicted 11 normal and 24 abnormal cases, with 1 normal cases misclassified as abnormal and 0 abnormal cases 

misclassified as normal. 
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Fig: 19 ROC curve of AUC Score 

 

Fig 19 displays the ROC curve for the ECG Arrhythmia Image dataset, where the model achieves a perfect AUC score of 

100%, indicating excellent class classification. The curve demonstrates strong classification ability, characterized by a high 

True Positive Rate (TPR) and a low False Positive Rate (FPR). 

 

Table 3: Performance Comparison of Classification Models 

 

 

Methods 

Performance metrics 

Accuracy precision Recall F1-

score 

Specificity Sensitivity Training 

time 

LSTM 80% 84% 77% 80% 78% 85% 45.86 

ANN 75% 74% 75% 82% 

 

73% 83% 43.87 

SVM 89% 85% 85% 88% 75% 84% 42.91 

Proposed 98% 98% 98% 98% 94% 99% 36.31 

 

Table 3 represents a comparison of four models—LSTM, ANN, SVM, and a proposed model across various performance 

metrics in a classification task. The proposed model outperforms the other models in terms of accuracy (98%), precision 

(98%), recall (98%), and F1 score (98%), indicating a strong balance between correctly identifying positive cases and 

minimizing false positives and negatives. It also achieves a higher specificity (94%) and sensitivity (99%), highlighting its 

ability to correctly classify both negative and positive cases. Notably, the proposed model also has the shortest training 

time (36.31 seconds), suggesting it is not only more accurate but also more computationally efficient than LSTM (45.86), 

ANN (43.87), and SVM (42.91). These results suggest the proposed model provides significant improvements in both 

predictive performance and training efficiency. 

 

CONCLUSION 
In conclusion, this paper presents an innovative T-

ANFIS-based cardiac disease diagnosis system that 

efficiently processes ECG signals for identifying and 

classifying abnormal heartbeats. The integration of TM-

RFO enhances feature selection by improving 

exploration capabilities, preventing premature 

convergence to local optima. The DL-LSTM model 

addresses the issue of overfitting in sequential data 

analysis by introducing dropout, leading to better 

generalization. The abnormal signals are further 

classified using the T-ANFIS model, which employs 

adaptive Trapezoidal membership functions, optimizing 

their parameters for improved accuracy in detecting 

conditions such as Atrial Fibrillation, Ventricular 

Fibrillation, and Bradycardia. The proposed approach 

utilizes a T-ANFIS to improve the diagnosis of heart 

disease. Simulations were conducted using two datasets: 

the MIT-BIH dataset and ECG images specific to cardiac 

conditions. The results indicated that the T-ANFIS 

model outperformed existing models (LSTM, ANN, and 

SVM), achieving accuracy rates of 82%, 83%, and 82% 

on the ECG images related to cardiac diseases, and 97%, 

97.4%, and 95% on the MIT-BIH dataset, respectively. 
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