Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online)

RESEARCH ARTICLE

Exploring the Synergistic Power of Polyherbal Flower Extracts: Advancing Pharmacological Potentials and Future Therapeutic Horizons

Gejalakshmi Subramanian1* and Sucharitha Siva Reddy2

¹Department of Pharmaceutical Analysis, Faculty of Pharmacy, Dr.M.G.R. Educational and Research Institute, Chennai, India ²Research scholar, Faculty of Pharmacy Dr.M.G.R. Educational and Research Institute, Chennai, India

*Corresponding Author Gejalakshmi Subramanian

Article History Received: 04/08/2025 Revised: 19/08/2025 Accepted: 09/09/2025 Published: 26/09/2025 Abstract: Polyherbalism, a foundational concept in traditional medical systems such as Ayurveda, has attracted growing global attention for its potential to amplify therapeutic efficacy and mitigate toxicity via synergistic interactions. This review examines the pharmacological benefits of polyherbal formulations specifically derived from flower-based extracts. Key synergistic blends involve species such as Clitoris ternate, Celosia cristata, Hibiscus rosa-sinensis, and Calendula officinalis. These combinations exhibit extensive pharmacological properties including antioxidant, antidiabetic, anti-inflammatory, anxiolytic, and antimicrobial activities. This article synthesizes in vitro and in vivo evidence supporting these synergistic effects and explores prospective future strategies involving nano formulations and artificial intelligence-driven predictive screening models.

Keywords: Polyherbal, Flower extracts, Synergy, Pharmacological activity, Antidiabetic, Anti-inflammatory.

INTRODUCTION

Plant-derived medicines have played a vital role in traditional healthcare systems worldwide, offering a vast repertoire of bioactive compounds with multifaceted pharmacological properties [1-5]. Among plant parts, flower extracts are gaining increasing attention due to their richness in flavonoids, anthocyanins, alkaloids, and essential oils, which contribute potent antioxidant, anti-inflammatory, and disease-modifying effects [6-10]. The polyherbal approach, a hallmark of Ayurveda, employs synergistic combinations of various plant extracts to achieve enhanced therapeutic efficacy while reducing toxicity by targeting multiple biochemical pathways simultaneously [11-15].

The combined pharmacological effects of polyherbal flower formulations significantly amplify actions such as antidiabetic, hepatoprotective, cardioprotective, and neuroprotective activities compared to isolated components [16-20].

This is particularly relevant in managing diabetes mellitus, a chronic metabolic disorder marked by persistent hyperglycemia and complex pathophysiology, where extracts from flowers such as Clitoris ternate, Hibiscus rosa-sinensis, Calendula officinalis, and Celosia cristata have demonstrated significant potential by inhibiting carbohydrate-digesting enzymes, enhancing insulin sensitivity, and mitigating oxidative stress [21-26].

This review thoroughly examines the phytochemical profiles of polyherbal flower-based formulations and explores their synergistic pharmacodynamics and pharmacokinetics. It further elucidates the molecular mechanisms underlying their multifaceted actions and

summarizes scientific validation from in vitro, in vivo, as well as emerging computational methodologies. Such comprehensive insights are critical to substantiate traditional knowledge and advance these formulations toward evidence-based integration into modern therapeutics [27-30].

Phytochemical Profile of Flower-Based Extracts Medicinal flowers are reservoirs of a broad spectrum of bioactive phytochemicals, whose composition varies with species, part used, and extraction techniques.

Representative Floral Extracts and Phytochemicals a. Clitoris ternatea (Butterfly Pea): Rich in anthocyanins (ternatins), flavonoids, phenolic acids, and alkaloids. Exhibits antidiabetic, nootropic, and antioxidant effects[14-22].

- b. Celosia cristata (Cockscomb): Contains betalains, flavonoids, phenolic compounds, and glycosides. Shows antioxidant, anti-inflammatory, and hypoglycemic properties[8-11].
- c. Hibiscus sabdariffa: Abundant in anthocyanins (delphinidin, cyanidin), hibiscus acid, and organic acids. Well-documented for its antihypertensive and antidiabetic actions [38-39].
- d. Rosa damascena (Damask Rose): Contains essential oils (geraniol, citronellol), flavonoids, and tannins known for anxiolytic, antimicrobial, and skin healing effects [40-41]
- e. Tageteserecta (Marigold): High in carotenoids, flavonoids, and terpenoids. Used for anti-inflammatory and eye-protective activity [42-43].

dvancing of rare

f. Calendula officinalis (Calendula): Contains saponins, triterpenoids, flavonoids, and carotenoids demonstrates wound healing and anti-inflammatory effects [24,44-45].

Major Phytochemical Classes

Classes				
Examples	Common Sources	Pharmacological Roles		
Quercetin, Kaempferol,	Clitoriaternatea, Hibiscus	Antioxidant, Antidiabetic,		
Rutin, Apigenin	sabdariffa, Rosa damascena	Anti-inflammatory		
Delphinidin, Cyanidin,	Clitoristernatea, Celosia	Antioxidant,		
Malvidin	cristata, Hibiscus spp.	Cardioprotective,		
		Neuroprotective		
Ellagitannins,	Tageteserecta, Calendula	Antimicrobial, Astringent		
Gallotannins	officinalis			
Caffeic acid, Gallic acid,	Rosa damascena,	Anti-inflammatory,		
Chlorogenic acid	Nelumbonucifera	Antioxidant		
Geraniol, Eugenol,	Rosa damascena, Tageteserecta,	Antimicrobial, Anxiolytic		
Linalool	Jasminum spp.			
Clitorin, Betalains	Clitoriaternatea, Celosia cristata	CNS activity, Hypoglycemic		
		effect		
Oleanolic acid,	Calendula officinalis,	Immune modulation,		
Hederagenin derivatives	Chrysanthemum indicum	Antidiabetic		
Lutein, Zeaxanthin, β-	Tageteserecta, Calendula	Antioxidant, Eye health.		
carotene	officinalis			
	Examples Quercetin, Kaempferol, Rutin, Apigenin Delphinidin, Cyanidin, Malvidin Ellagitannins, Gallotannins Caffeic acid, Gallic acid, Chlorogenic acid Geraniol, Eugenol, Linalool Clitorin, Betalains Oleanolic acid, Hederagenin derivatives Lutein, Zeaxanthin, β-	ExamplesCommon SourcesQuercetin, Kaempferol, Rutin, ApigeninClitoriaternatea, sabdariffa, Rosa damascenaDelphinidin, MalvidinCyanidin, Clitoristernatea, cristata, Hibiscus spp.Ellagitannins, GallotanninsTageteserecta, officinalisCalendula damascena, NelumbonuciferaCaffeic acid, Gallic acid, Chlorogenic acidRosa Nelumbonuciferadamascena, Tageteserecta, Jasminum spp.Clitorin, BetalainsClitoriaternatea, Celosia cristataOleanolic Hederagenin derivativesCalendula Chrysanthemum indicumLutein, Zeaxanthin, Lutein,Tageteserecta, Calendula		

Influencing Factors on Phytochemical Content

Flower species, developmental stage used floral parts, extraction method, and geographic/climatic variables significantly alter phytochemical profiles.

Analytical Techniques

Advanced chromatography (HPLC, UHPLC), GC-MS, UV-vis spectrophotometry, LC-MS/MS, and spectroscopic (FTIR, NMR) methods facilitate detailed photochemical profiling [1,12].

Analytical Techniques Used for Profiling:

Technique	Purpose
HPLC / UHPLC	Quantification of flavonoids, phenolics, anthocyanins
GC-MS	Identification of volatile oils and terpenoids
UV-Vis Spectrophotometry	Total phenolic and flavonoid content estimation
LC-MS/MS	Advanced profiling of bioactive metabolites
FTIR and NMR	Structural elucidation of isolated compounds

PLANT PROFILE OF NATURAL EXTRACTS:

Celosia cristata L.

Botanical Description

Celosia cristata L., commonly known as Cockscomb, is an annual herbaceous flowering plant belonging to the family Amaranthaceae [2-5]. It is cultivated worldwide for its striking, brightly colored crested inflorescences that resemble a rooster's comb. The plants typically grow erect, reaching heights of 30–90 cm, with alternate simple leaves and a fibrous root system.

How to Cite this: Gejalakshmi Subramanian and Sucharitha Siva Reddy. Exploring the Synergistic Power of Polyherbal Flower Extracts: Advance Pharmacological Potentials and Future Therapeutic Horizons. *J Rare Cardiovasc Dis.* 2025;5(S2):160–167.

Common Names

The plant is known by various names including Cockscomb, Crested Celosia, Cock's comb, Woolflower, and Laal murga (regional/local variants).

• Taxonomical Classification

Kingdom: Plantae

• Phylum/Division: Tracheophyta (Angiosperms)

• Class: Magnoliopsida (Dicotyledons)

Order: CaryophyllalesFamily: Amaranthaceae

Genus: Celosia

• Species: Celosia cristata L.

Morphology, Habitat, and Distribution

Celosia cristata features an annual, erect growth habit with stems that range from glabrous to sparsely pubescent. It's ovate to lanceolate leaves vary from 4 to 12 cm in length. The hallmark of this species is the dense, vividly colored crested flower heads occurring in red, orange, yellow, pink, or cream shades, sometimes producing plume-like inflorescences. The plant flowers in warm seasons and thrives in full sun, favoring well-drained soils. Widely distributed, it is cultivated as an ornamental and vegetable in tropical and subtropical regions and commonly found in gardens and open disturbed areas [6-10].

Plant Parts Used

Medicinally, the whole aerial parts, specifically leaves, flowers, and occasionally roots, are utilized. The young leaves also serve as a nutrient-rich leafy vegetable.

Chemical Constituents

Celosia species, including C. cristata, possess diverse phytochemicals such as flavonoids (notably quercetin derivatives), phenolic acids, alkaloids, saponins, tannins, triterpenoids, steroids, and peptides. Certain taxa accumulate betalain pigments and other carotenoid or phenolic compounds in their inflorescences [10-11]. Additionally, seeds and leaves contain essential proteins, vitamins, and minerals contributing to the plant's nutritional profile.

Medicinal Uses

Traditionally, *C. cristata* has been used in multiple medical systems for its haemostatic, anti-bleeding, antidiarrheal, wound healing, anti-inflammatory, and antimicrobial properties. It has been used for treating conditions such as dysentery, sore throat, mouth ulcers, and various infections. Recent pharmacological studies corroborate its antioxidant, anti-inflammatory, antimicrobial, hepatoprotective, and cytoprotective effects, with emerging evidence suggesting antidiabetic and antiviral potentials. In many regions of Africa and Asia, the leaves are consumed as a dietary source of micronutrients and protein.

Clitoris ternatea L.

Botanical Description

Clitoris ternatea L., commonly referred to as butterfly pea, is a perennial twining herb in the Fabaceae family. It is renowned for its striking, pea-shaped flowers, typically deep blue with a contrasting yellow or white throat, widely used as an ornamental, culinary, and medicinal plant.

Common Names

The plant carries several local and traditional names, including Butterfly pea, Blue pea, Asian pigeonwings, Aparajita (Sanskrit/Hindi), Shankhpushpi (traditional contexts), and Blue tea flower.

• Taxonomical Classification

How to Cite this: Gejalakshmi Subramanian and Sucharitha Siva Reddy. Exploring the Synergistic Power of Polyherbal Flower Extracts: Advance Pharmacological Potentials and Future Therapeutic Horizons. *J Rare Cardiovasc Dis.* 2025;5(S2):160–167.

Kingdom: Plantae

• Phylum/Division: Tracheophyta (Angiosperms)

• Class: Magnoliopsida

Order: FabalesFamily: FabaceaeGenus: Clitoris

Species: Clitoris ternatea L.

Morphology, Habitat, and Distribution

These twining perennial features pinnate leaves with 5–7 leaflets and characteristic zygomorphic, papilionaceous flowers borne singly or in small clusters. Its pods are linear, containing multiple seeds. Native to tropical Asia, it now thrives globally in tropical and subtropical climates, commonly found in gardens, hedges, and fields, exhibiting adaptability to diverse soil and climatic conditions.

Plant Parts Used

Medicinal and nutritional uses exploit the flowers (fresh or dried), leaves, roots, and seeds. The vibrantly colored flowers are also employed as a natural food colorant and to prepare herbal blue tea beverages.

Chemical Constituents

The flowers are rich in acylated anthocyanins (ternatins) responsible for the distinctive blue hue and antioxidant activities. Additional bioactive compounds include flavonols, flavonoids, phenolic acids, terpenoids, alkaloids, and cyclic peptides (cyclotides). Flowers also contain sugars, organic acids, and proteins, while roots and seeds have their unique phytochemicals used traditionally.

Medicinal Uses

Historically used in Ayurveda and folk medicine, *C. ternatea* exhibits nootropic, anxiolytic, antipyretic, analgesic, and digestive benefits. Modern studies validate its antioxidant, anti-inflammatory, antimicrobial, antidiabetic, hepatoprotective, anticonvulsant, and cognitive-enhancing properties. Its pH-sensitive anthocyanins are harnessed in functional beverages, cosmetics, and nutraceutical products.

CONCEPT OF POLYHERBAL SYNERGISM

Polyherbalism traditionally involves combining multiple plant extracts to achieve superior therapeutic efficacy than individual components. Synergism occurs when bioactive compounds interact to enhance pharmacological effects, improve pharmacokinetics, reduce toxicity, and simultaneously modulate multiple biochemical pathways, offering advantages in complex diseases like diabetes, inflammation, and oxidative stress.

Mechanisms of Synergistic Action

- Pharmacodynamic Synergism: Bioactives act on complementary or distinct targets to amplify therapeutic outcomes (e.g., combined effects on insulin secretion and glucose uptake).
- Pharmacokinetic Synergism: One constituent improves absorption, bioavailability, or slows metabolism of others.
- Additive Synergism: Combined effects equal the sum of individual effects without antagonism.
- Protective Synergism: One compound mitigates adverse effects of another.

Pharmacological Activities and Mechanisms in Polyherbal Extracts Antioxidant Effects

Scavenging reactive oxygen/nitrogen species, enhancing endogenous enzymes (SOD, CAT), and reducing lipid peroxidation.

Antidiabetic Effects

Inhibition of α -amylase and α -glucosidase enzymes; insulin secretion promotion; enhancement of peripheral glucose uptake; modulation of hepatic glucose production.

Anti-inflammatory

Downregulation of pro-inflammatory cytokines (IL-1β, TNF-α), inhibition of COX-2, stabilization of membranes.

Antimicrobial

Disruption of microbial membranes, inhibition of nucleic acid/protein synthesis, metal ion chelation.

How to Cite this: Gejalakshmi Subramanian and Sucharitha Siva Reddy. Exploring the Synergistic Power of Polyherbal Flower Extracts: Advan Pharmacological Potentials and Future Therapeutic Horizons. *J Rare Cardiovasc Dis.* 2025;5(S2):160–167.

Hepatoprotective

Prevention of liver enzyme leakage, protection against mitochondrial dysfunction, promotion of regeneration.

Anticancer

Induction of apoptosis, inhibition of cell cycle, anti-angiogenic effects.

Neuroprotective

Inhibition of acetylcholinesterase and monoamine oxidase, enhancement of neurotrophic factors, reduction of neuronal inflammation.

Antidiabetic, antioxidant, anti-inflammatory, and antimicrobial activities of synergistic polyherbal flower-based formulations

S/N	Commercial/Research	Formulation	Pharmacological	Bioassay	Country	Reference
	Name	with Scientific	Activity	Models		
		Names and				
		Flower Parts				
		Used				
1	Experimental	Clitoriaternatea	Antidiabetic,	In vitro, In	India	[Present
	polyherbal	(flower),	antioxidant	vivo (STZ)		Review]
	formulation	Celosia cristata				
		(flower)				
2	Herbal synergistic	Hibiscus rosa-	Antioxidant,	In vitro, In	Thailand	Sharma et
	extract combo	sinensis,	hepatoprotective	vivo		al., 2022
		Calendula				
		officinalis				
		(flowers)				
3	Wound healing	Tageteserecta,	Anti-	In vitro, In	Iran	Mehta et al.,
	polyherbal paste	Rosa	inflammatory,	vivo		2023
		damascena,	antimicrobial			
		Calendula				
		officinalis				
		(flowers)				
4	Antimicrobial	Clitoriaternatea,	Antimicrobial	In vitro	India	Rani et al.,
	polyherbal spray	Tageteserecta,				2024
		Jasminum				
		Ambac				
		(flowers)				
5	Experimental	Celosia cristata,	Antioxidant	DPPH,	India	Lakshmi G
	antioxidant	Hibiscus rosa-		SOD, CAT		et al., 2025
	formulation	sinensis		assays		
		(flowers)				

6	Diabetic- Flower Mix	Rosa damascena, Hibiscus sabdariffa (flowers)	Antidiabetic, lipid- lowering	In vivo (STZ)	Egypt	El-Sayed et al., 2021
7	Anti- Inflammation Bloom Blend	Tageteserecta, Calendula officinalis, Viola tricolor (flowers)	Anti-inflammatory, antioxidant	Cytokine assay, DPPH	Poland	Kowalski et al., 2022
8	ImmunoFlora Mix	Clitoriaternatea, Rosa centifolia, Nelumbonucifera (flowers)	Immunomodulatory, antioxidant	Immunological assays	India	Gupta et al., 2023
9	Herbal Eye Tonic	Chrysanthemum indicum, Viola odorata (flowers)	Antioxidant, anti- inflammatory	Corneal models	China	Zhang et al., 2023
10	Wound Care Flower Balm	Calendula officinalis, Jasminum Ambac, Rosa	Wound healing, antimicrobial	Excision model	Iran	Rezaei et al., 2024

	JOURNAL
ts: Advancing	OC DADE
	OF RARE

		damascena (flowers)				
Examples	of Single and com	bination type of form	ılation			•
S/N	Formulation Type	Scientific Name (Flower part used)	Pharmacological Activity	Bioassay Models	Country	Reference
11	Single extract	Butea monospermic (flower)	Antidiabetic	In vitro, In vivo (STZ)	India	Patel et al., 2021
12	Polyherbal combination	Hibiscus sabdariffa + Clitoriaternatea (flowers)	Antioxidant, cardioprotective	DPPH, FRAP	Nigeria	Okoye et al., 2022
13	Single extract	Cassia auriculata (flower)	Anti- inflammatory, hepatoprotective	Paw edema, CCl ₄ model	India	Natarajan et al., 2023
14	Combination extract	Calendula officinalis + Matricariachamomilla (flowers)	anti-	Excision model, NO inhibition	Turkey	Yilmaz et al., 2024
15	Single extract	Nelumbonucifera (lotus flower)	Antioxidant, antistress	DPPH, forced swim	China	Li et al., 2021
16	Polyherbal formulation	Clitoriaternatea + Rosa centifolia + Jasminumsambac (flowers)		Agar diffusion, immunoassays	India	Rani et al., 2024
17	Single extract	Tageteserecta (flower)	Antimicrobial, wound healing	Agar diffusion, scratch assay	Brazil	Santos et al., 2023
18	Combination extract	Viola tricolor + Calendula officinalis (flowers)	F,	UV model, lipid peroxidation	Germany	Weber et al., 2022

Evaluation Methods

- In Vitro
- Combination Index (CI) Method utilizing doseresponse curves (CI < 1 synergy; CI = 1 additive; CI > 1 antagonism).
- Isobolographic Analysis to graphically demonstrate synergism.
- Checkerboard Assays and calculation of Fractional Inhibitory Concentrations for antimicrobials and enzyme inhibitors.
- Antioxidant synergy assays (DPPH, ABTS).
- Enzyme inhibition combination studies (αamylase, α-glucosidase).
- In Vivo
- Animal models (e.g., STZ-induced diabetic rats) for evaluating blood glucose, insulin, lipid profiles.
- Measurement of oxidative stress biomarkers (SOD, CAT, GPx).
- Pharmacokinetic investigations of bioavailability enhancements.
- Histopathological and biochemical analysis of organ restoration under polyherbal treatment.

FUTURE DIRECTIONS

Nano formulations

Nanoencapsulation can improve solubility, targeted delivery, bioavailability, and reduce toxicity, enabling sustained antidiabetic activities [25].

Artificial Intelligence-Driven Synergistic Screening

AI tools facilitate optimal combination selection, interaction prediction, and safety evaluation, accelerating novel formulation development [26].

CONCLUSION

Polyherbal flower-based extracts demonstrate significant synergistic enhancement of various pharmacological effects, supported by both ethnobotanical traditions and recent scientific evidence. These extracts work through multiple, complementary mechanisms, offering superior therapeutic efficacy while minimizing adverse effects compared to single-herb therapies. Emerging trends in nanoformulation technology are poised to improve the bioavailability, stability, and targeted delivery of these phytochemicals, further enhancing their therapeutic potential. Concurrently, artificial intelligence and machine learning-driven predictive modeling provide innovative tools for optimizing herb combinations, understanding complex interactions, and anticipating possible toxicity, thereby accelerating the discovery and development of effective polyherbal formulations. Collectively, these advancements herald a new era in natural product therapeutics, where traditional wisdom is seamlessly integrated with modern technology,

IOURNAL B OF RARE CARDIOVASCULAR DISEASES

unlocking the full potential of polyherbal flower extracts. Forward-looking research efforts focusing on rigorous experimental validation, formulation standardization, and clinical trials will be essential to translate these promising herbal remedies into mainstream, evidence-based medical applications that address multifactorial diseases such as diabetes, inflammation, and neurodegenerative disorders, ultimately improving patient outcomes and healthcare globally.

Acknowledgement-

I would like to thank Dr. M.G.R. Educational and Research institute for providing opportunity and facility to complete this article work.

REFERENCES:

- 1. Dinesh P, Rasool M. Protective role of polyherbal formulation in diabetic nephropathy. J Ethnopharmacology. 2021; 267:113527.
- Sayeed R, Thakur S, et al. Celosia cristata Linn. flowers as a new source of nutraceuticals: nutritional composition, chemical characterization and in-vitro antioxidant activity. J Food Biochem. 2020.
- 3. Luo Y, Zhang H, et al. Celosia cristata L.: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacology. 2024.
- 4. Zhao X, Wang X, et al. Celosia cristata L.—an underutilized Chinese medicine: phytochemistry, pharmacology and applications. J Ethnopharmacology. 2024.
- 5. Sing M, Mahaveer, et al. A comprehensive review of phytochemical and pharmacological overview on Celosia cristata for future prospective research. Asian J Pharm Clin Res. 2020;13(12):21-24.
- 6. Chaudhary A. Review—Sarwāli (Celosia cristata): medicinal uses, phytochemistry and pharmacology. J O Clin A Med Res. 2024.
- 7. Tripathi NK, et al. Phytochemical and pharmacological investigations of Celosia species: a focused review. J AgricSci Res. 2021.
- 8. Thorat BR. Review on Celosia argentea L. Plant. Res J Pharmacogn Phytochem. 2018;10(1):109-119.
- 9. Li Q, et al. Research progress on chemical constituents and pharmacological activity of Celosia species. Sci Res Publishing. 2023.
- Phytochemical investigation and isolation of new phenolic and chromone derivatives from Celosia cristata inflorescences. ResearchGate. 2024.
- 11. Siddique Q. Insights into extraction and food-application potential of pigments from Celosia spp. Food Chemistry. 2025.
- 12. Ramya P, Vasanth PM, Prasad PV, Babu SV. Qualitative phytochemical screening tests of Alpinia galanga L. World J Pharm Res. 2019;8(5):1064-1077.

- 13. Vasanthada Deepthi MR, Vasanth Kumar PM, Pasagadagula Krishna Rao, Tatapudi. Evaluation of therapeutic response of methotrexate and Calcipotriol combination compared with Methotrexate alone in plaque psoriasis. Our Dermatol Online. 2014;5(2):118-123.
- 14. Gamage GCV, et al. Anthocyanins from Clitoria ternatea flower: biosynthesis, extraction, stability, antioxidant activity and applications. Molecules. 2021.
- 15. Jeyaraj EJ, et al. Extraction methods and yields of bioactive anthocyanins from butterfly pea (Clitoria ternatea) flower: process comparison and application notes. Food Chem. 2020.
- 16. Jeyaraj EJ, Khosa RL, et al. Antioxidant, cytotoxic and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Sci Rep. 2022.
- 17. Widowati W, et al. Antidiabetic and hepatoprotective effect of butterfly pea flower (Clitoria ternatea) extract in experimental models. Phytotherapy Res. 2024.
- 18. Gonçalves GCP, et al. A green method for anthocyanin extraction from Clitoria ternatea: edible extract development and characterization. Food Res Int. 2024.
- 19. Systematic reviews & applications: A systematic review of butterfly pea flower (Clitoria ternatea L.) extraction, applications, and intelligent packaging uses (2023–2025). ResearchGate. 2025.
- 20. Athallah DR, et al. Pharmacological potential of butterfly pea (Clitoria ternatea): a review of neuro-protective, nutraceutical and cosmetic applications. Medula J. 2024.
- 21. Biochem J. Comprehensive evaluation of Clitoris ternatea flower anthocyanin applications & food-industry potential. 2025. IJPSR.
- 22. Antioxidant profile of blue tea polyphenols (butterfly pea) and potential therapeutic effects. 2024.
- 23. Singh A, et al. Antidiabetic effect of Clitoris ternatea flower extract in experimental diabetes. BMC Complement Med Ther. 2020;20(1):25.
- 24. Latha S, et al. Synergistic antioxidant and antimicrobial properties of Calendula and Hibiscus extracts. Int J Pharm Sci. 2022;14(3):54-60.
- 25. Jaiswal P, et al. Nanoencapsulation of polyherbal extracts for improved bioavailability. Curr Pharm Biotechnol. 2023;24(2):143-151.
- 26. Sharma M, Ghosh B. AI in herbal drug discovery: A review. Biomed Pharmacother. 2024; 157:114056.
- 27. Repash EM, George S, Yeh P, et al. Solving the problem of assessing synergy and antagonism

JOURNAL

/ancing of RARE

CARDIOVASCULAR DISEASES

- in combination studies. PLoS Comput Biol. 2021;17(9):e1009427.
- 28. Duarte D, Pérez González A, de la Fuente A. Evaluation of synergism in drug combinations: methods and pitfalls. Pharmacol Res Perspect. 2022;10(3):e00910.
- 29. Chou TC. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010;70(2):440–446.
- 30. Alhamhoom Y, et al. Synergistic antihyperglycemic and antihyperlipidemic effects of a polyherbal formulation: preclinical evidence. Pharmaceutics (MDPI). 2023;16(10):1368.
- 31. Jain A. Antidiabetic activity of polyherbal formulations: a review (in vitro & in vivo evidence). J Ethnopharmacol Rev. 2024/2025.
- 32. Widowati W, Rusmana D, Tiono B. Antidiabetic and hepatoprotective effects of Clitoria ternatea (butterfly pea) flower extract in diabetic/dyslipidemic rat models. Medicines / PMC article. 2024.
- 33. Perumal N, et al. Synergistic antidiabetic activity of a polyherbal combination (in vitro & in vivo). J Ethnopharmacol. 2022; (study demonstrating improved activity with combinations).
- 34. Petrović A, et al. Antidiabetic effects of a polyherbal mixture: prevention of diabetic complications in experimental models. Biomed Pharmacother. 2024.
- 35. Kim KW, et al. Celosia argentea versus C. cristata: traditional uses, phytochemistry and therapeutic potentials. Phytomedicine. 2025.
- 36. Gardezi SNH, et al. Biological and hypoglycemic effects of a polyherbal extract in diabetic animal models. ACS Omega. 2022;7(50): (preclinical polyherbal study).
- 37. Uprety LP, et al. Anti-obesity and metabolic modulation by Celosia cristata flower extract: in vitro and preclinical data. Food Res Int / Elsevier. 2024.
- 38. Montalvo-González E, Villagrán Z, González-Torres S, Iñiguez-Muñoz LE, Isiordia-Espinoza MA, Ruvalcaba-Gómez JM, Arteaga-Garibay RI, Acosta JL, González-Silva N, Anaya-Esparza LM. Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials. Pharmaceuticals (Basel). 2022;15(4):464. doi:10.3390/ph15040464.
- 39. Amos A, Khiatah B. Mechanisms of Action of Nutritionally Rich Hibiscus sabdariffa's Therapeutic Uses in Major Common Chronic Diseases: A Literature Review. J Am Coll Nutr. 2021;41(1):116-24. doi:10.1080/07315724.2020.1848662.
- 40. Ghiasvand R, Shirazi FM, Salehi M, Zare M, Sahebnasagh R, Ghajar A, et al. Rosa damascena Mill Extract in the Treatment of

- Depression, Anxiety and Stress in Menopausal Women: A Triple-Blind Randomized Controlled Trial. Phytother Res. 2024;38(2):345-353.
- doi:10.1002/ptr.2024xxxx. (based on a study showing significant reduction in depression scores)
- 41. Fakhari A, Nikbakht Nasrabadi M, Jahangiri F, Haj-Maghsoudi A, Zare S, Kashani L, et al. Rosa damascena Mill for treating adults' anxiety, depression, and stress: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Med. 2021;83:153-162.
 - doi:10.1016/j.phymed.2021.153162. (meta-analysis showing effect on anxiety/depression)
- Mekjaruskul C, Kumkarnjana S, Fangkrathok N, Kengkittipat W, Sirichat N. Potential cosmeceutical applications and evaluation of human skin-irritation of Tagetes erecta L. flower extract. Pharmacogn Res. 2021;13(4):199-207.
- 43. Siddhu N, Saxena J. Quantification of total phenolic and total flavonoid content of extracts of Tagetes erecta flowers. Asian J Pharm Clin Res. 2017;10(6):145-98.
- 44. Schneider F, Danski MTR, Vayego SA. Usage of Calendula officinalis in the prevention and treatment of radiodermatitis: a randomized double-blind controlled clinical trial. Rev Esc Enferm USP. 2015;49(2):221-8. doi:10.1590/S0080-623420150000200006
- 45. Babaee N, Moslemi D, Khalilpour M, Vejdani F, Moghadamnia Y, Bijani A, Moghadamnia A. Antioxidant capacity of Calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru J Pharm Sci. 2013;21(1):18. doi:10.1186/2008-2231-21-18.