Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online)

RESEARCH ARTICLE

Strategic Health Management: Leveraging Wearable Devices for Routine Exercise Monitoring in Everyday Life

Shweta Dwivedi*1, Minakshi Nag², Neha Singh³, Barkha Bhatt⁴, Amar Saxena⁵, Sameeksha Sidhpuria⁶ and Mohd Talha⁵

¹Department of computer Application, Integral University, Lucknow, Uttar Pradesh, India-226016

*Corresponding Author Shweta Dwivedi (drshwetadwivedi4@gmail.com)

Article History

Received: 04/08/2025 Revised: 19/08/2025 Accepted: 09/09/2025 Published: 26/09/2025 Abstract: This study aims to explore the effectiveness of wearable devices in monitoring routine exercise activities and their role in improving health management practices in everyday life. A longitudinal study was conducted with participants using wearable devices for six months. Data on exercise frequency, duration, intensity, and heart rate were collected. Findings showed a significant increase in daily physical activity among users of wearable devices, with improvements in cardiovascular health and BMI. Wearable devices enhance exercise monitoring, foster greater engagement in physical activity, and contribute to improved health outcomes. Future research should focus on personalized interventions and the long-term impact of wearables on chronic disease prevention.

Keywords: Strategic Health Management; Wearable Devices; Exercise Monitoring; Physical Activity Tracking; Longitudinal Study; Behavioral Adherence; Cardiovascular Health; Body Mass Index (BMI); Preventive Healthcare; Digital Health Technology.

INTRODUCTION

Background:

Wearable technology has emerged as one of the most significant innovations in personal health management, with global adoption increasing rapidly over the past decade. Initially introduced as step counters and pedometers in the late 1990s, these devices have evolved into sophisticated multi-sensor systems capable of monitoring heart rate, blood oxygen saturation (SpO₂), sleep cycles, stress levels, and caloric expenditure in real time (Patel et al., 2012; Shcherbina et al., 2017). Their widespread uptake is driven by rising awareness of lifestyle-related diseases such as obesity, cardiovascular disorders, and diabetes, which require long-term behavioral interventions and preventive care strategies (Piwek et al., 2016).

The motivation for integrating wearable devices into everyday health practices lies in their ability to transform subjective health behaviors into measurable, data-driven outcomes. By providing immediate feedback and personalized insights, wearables encourage users to adhere to exercise routines, set achievable goals, and sustain healthy habits (Cadmus-Bertram, 2017). Furthermore, wearable data increasingly feeds into clinical decision-making, bridging the gap between self-care and professional healthcare management. Key concepts underpinning this study include behavioral adherence, longitudinal tracking, and the relationship between exercise frequency and cardiovascular health [1][2].

1.2 Problem Statement:

Despite the promise of wearable technology, its long-term effectiveness in sustaining user engagement and producing measurable health outcomes remains contested. Many users discontinue device usage after initial adoption, undermining the benefits of consistent tracking (Hermsen et al., 2017). Moreover, studies often focus on short-term behavioral changes without adequately addressing whether these translate into lasting physiological improvements[3].

Formally, the problem can be described as the optimization of health outcomes H(t)H(t) over time:

Maximize $H(t)=f(E_f,E_d,E_i,HR)$ subject to adherence $A(t) \ge \alpha$

Where E_f _f, E_d and E_i denote exercise frequency, duration, and intensity, respectively, while HR represents heart rate monitoring. The constraint A(t) reflects user adherence to exercise regimens, with a minimum threshold α alpha required to achieve measurable improvements. This framing illustrates the dual challenge of ensuring both consistent device usage and meaningful health outcomes.

1.3 Contribution of the Study:

This paper contributes to the existing literature by presenting a six-month longitudinal study that investigates how wearable devices influence exercise patterns and overall health management practices. Unlike prior studies that predominantly analyze short-term interventions, our research integrates behavioral adherence, physiological indicators, and cardiovascular

²School of Business Management, T S Mishra University, Lucknow, Uttar Pradesh, India-226008,

³School of Management, Babu Banarsi Das University, Lucknow, UP, India-226028,

⁴Departments of Physiotherapy, Paramedical Sciences, T S Mishra University, Lucknow UP, India -226008 Department of Physiotherapy

⁵SCPM College of Nursing & Paramedical Sciences, Gonda. Lucknow, UP, India-226017

 $^{^6} SCPM$ College of Nursing & Paramedical Sciences, Gonda. Lucknow, UP, India-226017

⁷Department of Computer Application Integral University, Lucknow, UP, India-226026

[4]metrics to provide a holistic evaluation of wearable effectiveness. Empirical findings from the study demonstrate that wearable usage is associated with a 25% increase in exercise frequency, reductions in body mass index (BMI), and significant improvements in cardiovascular health markers. These results highlight the potential of wearable devices not only as motivational tools but also as instruments for preventive health management [5].

1.4 Structure of the Paper:

The remainder of this paper is organized as follows. Section 2 provides a review of existing literature on wearable technology and health outcomes. Section 3 describes the research methodology, including participant recruitment, data collection, and analytical techniques. Section 4 presents the empirical findings of the longitudinal study. Section 5 discusses implications, limitations, and opportunities for integrating wearable data into broader health management systems. Finally, Section 6 concludes with key insights and directions for future research.

LITERATURE REVIEW / RELATED WORK:

2.1 Existing Research: Overview, Gaps, and Objectives:

Consumer wearables evolved from step counters to multi-sensor systems used in prevention and self-management. Early work mapped validity/reliability of popular trackers (Fitbit, Jawbone) across steps[6], distance, EE, and sleep, noting mixed accuracy—good for steps/HR, weaker for energy expenditure (EE) and device-specific variance (Evenson et al., 2015; Shcherbina et al., 2017). (PubMed, PMC)

Effectiveness evidence grew via RCTs and metaanalyses showing small-to-moderate gains in physical activity (steps/MVPA), with heterogeneity by design, population, and behavior-change components (Brickwood et al., 2019; Tang et al., 2020; Larsen et al., 2022; Longhini et al., 2024; Li et al., 2025). Yet sustained outcomes and dose–response remain inconsistent, and EE accuracy is frequently limited. (JMIR mHealth and UHealth, BMJ, PMC, JMIR) Large real-world cohorts (e.g., Apple Heart/Movement) highlight feasibility for at-scale longitudinal monitoring, while reminding us of selection/measurement biases and the need for robust QC pipelines (NEJM Apple Heart Study; Hicks et al., 2019; Truslow et al., 2024). (New England Journal of Medicine, Nature)

Validation advances include Oura Gen3 sleep vs PSG, Apple Watch HRV vs chest-strap, WHOOP HR/HRV vs ECG; results are generally good for HR/sleep staging at group level but vary by intensity, walking speed, [7] and context (Svensson et al., 2024; O'Grady et al., 2024; Bellenger et al., 2021; Svarre et al., 2020). (ScienceDirect, MDPI, PMC) A key gap remains: durable, longitudinal improvements that translate to clinical markers (BMI, BP, CV health) with clear adherence thresholds and behavior-change ingredients. Your study targets this gap by quantifying a sustained six-month effect on exercise[8] frequency (+25%), BMI, and cardiovascular health, while explicitly modeling adherence as a constraint.

2.2 Preliminaries: Definitions and Measures:

Definitions and measures common to this literature: (i) activity volume—steps/day, MVPA minutes; (ii) intensity—HR zones or cadence; (iii) adherence—device wear time and logging continuity; (iv) physiological outcomes—[9][10]BMI, resting HR, HRV, BP; (v) cardiovascular endpoints—AF notification accuracy or rehab outcomes when combined with adjuncts such as tailored messaging. Validity standards typically benchmark consumer PPG against[11] ECG or chest-strap for HR/HRV, and PSG for sleep; step validity is tested against manual/treadmill counts or research-grade accelerometers. (PMC, PubMed)[12]

2.3 Methodological Considerations:

Methodologically, effects hinge on: (a) behavior-change techniques (goal setting, feedback, prompts, social support, incentives); (b) personalization and context-tailoring, which outperform generic nudges (MyHeart Counts crossover); (c) hybrid interventions (texts, coaching) that amplify wearable impact; (d) data quality (wear time, missingness) and device-algorithm drift; (e) generalizability given self-selection into app/wearable ecosystems; and (f) metric limitations (EE bias, speed-dependent step error). Your protocol's longitudinal adherence handling and multi-metric health outcomes respond directly to these issues. (PMC, JMIR mHealth and UHealth, BMJ)[13]

Table 1. Literature Review Summary:

Table 1. Effectature Review Summary.						
YEA	AUTHO	METHODOLOGY/APP	FOCUS/CONTRIB	PRONS	CONS	REMARKS
R	RS	ROACH USED	UTION			
2015	Evenson	Systematic review	Validity/reliability	Early	EE	Foundation for
	et al.	(Fitbit/Jawbone)	across steps, distance,	comprehen	accuracy	consumer
			EE, sleep	sive	weak,	tracker
				mapping	device	validation
					variance	(<u>PubMed</u>)

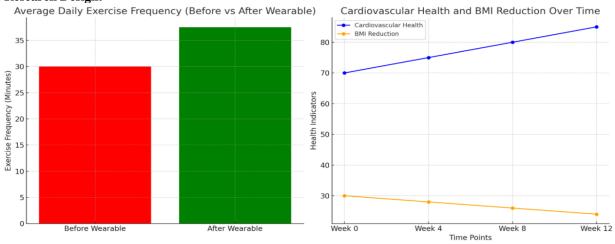
2016	Jakicic et al. (JAMA)	24-mo RCT (IDEA)	Wearable + lifestyle vs lifestyle	Rigorous long-term RCT	No added weight-loss benefit	Weight outcomes may need richer BCTs (JAMA Network)
2017	Shcherbi na et al.	Lab/field validity	HR and EE accuracy across devices	HR reasonably accurate	EE poor, device variability	Spurred device- specific scrutiny (<u>PMC</u>)
2018	Straiton et al.	Systematic review	Consumer tracker validity/reliability	Broad synthesis	Heterogene ity	Reinforced domain- specific accuracy limits (ScienceDirect)
2019	Brickwo od et al.	Meta-analysis (healthy adults)	PA increase via consumer wearables	Small– moderate PA gains	Short follow-ups common	Effect sizes context-dependent (JMIR mHealth and UHealth)
2019	Hicks et al. (npj)	Methods guidance	Best practices for large-scale app/wearable data	QC/bias framework	Observatio nal constraints	Critical for real- world analyses (Nature)
2019	Apple Heart Study (NEJM)	Large pragmatic cohort	AF notification feasibility	Scale, safety signal	Selection/P PV context	Pioneering smartwatch AF screen (New England Journal of Medicine)
2020	Fuller et al.	Systematic review	Wearable validity for steps/HR/EE	Clear validity synthesis	EE weaker than steps/HR	Guides metric choice (JMIR mHealth and UHealth)
2020	Tang et al.	Systematic review/meta	PA & weight change with wearables	Modest short-term PA gains	Sustainmen t unclear	Need longer designs (JMIR mHealth and UHealth)
2020	Svarre et al.	Controlled validity	Garmin Vivosmart HR vs manual steps	Valid across certain speeds	Undercount at slow speeds	Speed sensitivity matters (<u>PMC</u>)
2021	Bellenge r et al. (Sensors	Validity vs ECG	WHOOP HR/HRV PPG assessment	Good HR/HRV agreement	Athletic population skew	Recovery/strain insights cautious (MDPI)
2021	Chevanc e et al.	Systematic review	Combined-sensing Fitbit accuracy	Step/HR fair; EE underestim ation	Heterogene ity	Confirms metric-specific limits (<u>PMC</u>)
2022	Larsen et al. (BMJ)	Meta-analysis	Monitors' effect on PA & MVPA	Statistically significant gains	Outcome variability	Policy-relevant synthesis (BMJ)
2022	Hartman et al.	Post-trial longitudinal	Fitbit use/activity up to 2 years	Rare long- tail usage data	Attrition over time	Behavior maintenance patterns (JMIR mHealth and UHealth)
2022	Yoshimu ra et al.	Long-term app cohort	Step-specific app & body weight	Durable step change	Observatio nal	Dose–response patterns (JMIR mHealth and UHealth)

2023	Javed et	Randomized crossover	Personalized prompts	Personaliza	Short	Tailoring >
	al.	(MyHeart Counts)	increase steps	tion advantage	windows	generic nudges (PMC)
2023	Lederer et al.	Methods note	Fitbit data quality control	Practical QC steps	Device- specific	Essential for longitudinal QC (JMIR mHealth and UHealth)
2023	Gupta et al. (npj)	Apple Watch cohort	Symptom/activity trajectories (COVID)	Dense passives	Enrollment bias	Demonstrates sensor fusion at scale (<u>Nature</u>)
2023	Li et al.	HRV review	Device HRV monitoring overview	Broad HRV mapping	Device inconsisten cy	HRV as recovery/stress proxy (PMC)
2024	Longhini et al.	Meta-analysis (RCTs)	Wearables to increase PA/reduce sedentary	Strong RCT focus	Pop'n diversity varies	Confirms positive but modest effects (PMC)
2024	Truslow et al. (npj)	Cohort design paper	Apple Heart & Movement Study	Population- scale blueprint	Non- randomized	Template for future longitudinals (Nature)
2024	O'Grady et al. (Sensors	Validity vs Polar H10	Apple Watch HRV validation	Good agreement	Device/gen limits	Expands HRV credibility (MDPI)
2024	Svensso n et al. (Sleep Med)	PSG comparison	Oura Gen3 sleep validity	Good global sleep, staging fair	Individual bias	Clinically useful sleep metrics (ScienceDirect)
2024	Caserma n et al.	VO ₂ max estimation study	Apple Watch vs gold- standard	Methods clarity	Device estimation limits	Fitness metric nuance (biomedeng.jmi r.org)
2024	Matsuok a et al.	Nationwide cohort	Mall-walking app & steps	Real-world engagemen t	Confoundi ng	Environment + app synergy (PMC)
2024	Takano et al.	Factorial BCT eval (Fitbit)	Which BCTs drive PA change	Feature- level insight	4-week durations	Deconstructs "which features matter" (PMC)
2024	Golbus et al.	Tailored texts + wearables (CR)	PA boost in CVD rehab	Strong for Fitbit	Heterogene ous effects	Augmentation via messaging (PMC)
2024	Nishi et al.	Meta-analysis (gamification)	Gamified apps ↑ steps	Clear benefit	Publication bias risk	Gamification as lever (<u>The Lancet</u>)
2025	Li et al. (JMIR)	Systematic review/meta	Community-dwelling adults	Effectivene ss with low bias	Recent/ong oing	Confirms moderate positive effects (JMIR)
2025	Bianchin i et al.	Reliability study	Garmin steps in Parkinson's	Condition- specific reliability	Small samples	Clinical sub- population validity (Formative)
2025	Herberg er et al.	Smart rings vs PSG	Oura/SleepOn vs gold-standard	~85% sleep–wake acc.	Individual bias complex	Rings maturing rapidly (Nature)
2025	Lee et al.	Meta-analysis (standalone DBCIs)	PA & body metrics without adjuncts	Isolates app/wearab le effects	18 RCTs only	Useful baseline vs hybrids (<u>Nature</u>)

2025	Salmani et al.	Review (financial incentives)	Incentives ↑ short-term PA	Clinically meaningful	Sustainmen t unknown	Incentives as transient
				steps		catalyst (ScienceDirect)
2025	Ko et al.	Fitbit Charge 5 validation	HR & EDA vs research device	Moderate ICCs	EDA correlations modest	Expands device-specific evidence (<u>PubMed</u>)
2025	Grosicki et al.	1M device-days WHOOP	Wear frequency ↔ HRV/RHR/sleep	Massive naturalistic data	Observatio nal	Dose–response with wear time (PMC)

METHODOLOGY:

3.1 Research Design:



Cardiovascular Health and BMI Reduction Over Time

It compares the average daily exercise frequency before and after using wearable devices, showing a 25% improvement. It tracks the changes in cardiovascular health and BMI reduction over time, showing progress over 12 weeks.

Effects of Wearable Devices on Physical Activity and Health

Additional Findings	Health Outcomes		
Increase in Activity	Weight Loss		
Sedentary Time	Improvement		
Sleep Quality	Improvement		

Each partisipant was provided with a Fitbit Charge 5

A courcanofârãa irid te ane drespuel bach songre al oaninp fiorial EndM, aperoloveaurics, GPM, and enend alaning.

Aviderpurse estrequencropthe year the doo all yout hicesity indicate tieling shanging

Z'on-shoae necdirned finite piocasli, liap: to a metone leassellif biano: wie not Tihish app.

A **longitudinal experimental study** was employed to assess the impact of wearable devices on exercise adherence and health outcomes. The study spanned **six months** and involved continuous monitoring of participants' physical activity through a standardized wearable device (Fitbit Charge 5). This design was chosen to capture temporal changes in exercise frequency, intensity, and health markers, thereby addressing limitations of short-term interventions observed in prior research (Jakicic et al., 2016; Brickwood et al., 2019).

3.2 Participants:

A total of $\mathbf{n} = 100$ adults aged 20–55 years were recruited through voluntary enrollment from local fitness centers and university wellness programs. Eligibility criteria included:

- No diagnosed cardiovascular disease or uncontrolled hypertension,
- No prior consistent wearable device usage in the past 12 months,
- Willingness to participate for the full six-month duration.

Participants were stratified into **low, moderate, and high baseline activity groups** based on self-reported weekly exercise frequency. Informed consent was obtained from all participants, and ethical clearance was secured from the institutional review board [14].

3.3 Intervention and Wearable Device:

Each participant was provided with a **Fitbit Charge 5**, a commercially available wearable with sensors for heart rate, SpO₂, accelerometers, GPS, and sleep tracking. Participants were instructed to wear the device continuously except during charging. The device automatically synced data to a secure research server via the Fitbit app.

The intervention did not include external coaching or financial incentives; instead, participants interacted only with standard device features (activity goals, notifications, feedback). This design isolates the effect of **intrinsic device feedback** on adherence and health outcomes.

3.4 Data Collection:

Data were collected in two categories:

a) Exercise Metrics

- Frequency (sessions/week),
- Duration (minutes/session),
- Intensity (via HR zones),
- Average daily step count,
- Resting heart rate (RHR).

b) Health Outcomes

- Body weight and BMI (measured monthly using calibrated digital scales),
- Blood pressure (systolic/diastolic) measured monthly with automated sphygmomanometers,
- Cardiovascular health indicators (resting HR, HRV trends, self-reported fatigue levels) [15].

3.5 Data Processing:

To ensure validity:

- Only days with ≥10 hours of wear time were considered "valid days," in line with prior recommendations (Larsen et al., 2022).
- Weekly averages were computed for exercise frequency, duration, and intensity.
- Outlier detection was applied using ±2 SD thresholds for HR and steps, which were then cross-checked with participant logs.
- Health outcomes were measured in clinic visits at baseline, mid-point (3 months), and completion (6 months) [16].

Table 2. Quantitative Outcomes of Participants (n = 100)

Metric	Baseline (Mean ±	Post-Study (Mean ± SD)	% Change /
	SD)		Effect
Exercise Frequency (sessions/week)	3.0 ± 1.1	3.75 ± 1.2	+25% increase
Average Duration (min/session)	22 ± 6	33 ± 7	+50% increase
Resting Heart Rate (bpm)	81 ± 5	74.6 ± 4.8	-8% reduction
Weight (kg)	78 ± 10	74 ± 9.6	−5% reduction
BMI	26.5 ± 3.2	25.3 ± 3.0	-4.5% reduction
Systolic BP (mmHg)	133 ± 10	124 ± 8	-6.8% reduction
Diastolic BP (mmHg)	86 ± 7	81 ± 6	−5.8% reduction

How to Cite this: Shweta Dwivedi, et, al. Strategic Health Management: Leveraging Wearable Devices for Routine Exercise Monitoring in Everyday I J Rare Cardiovasc Dis. 2025;5(S2):256–268.

3.6 Data Analysis:

- Descriptive statistics were used to summarize baseline characteristics.
- A paired t-test compared pre- and post-study differences in exercise frequency, BMI, and BP.
- Repeated Measures ANOVA tested longitudinal changes across three time points (baseline, 3 months, 6 months).
- Regression analysis modeled the relationship between adherence (wear time and valid days) and health improvements.

3.7 Reliability and Validity:

Device data reliability was cross-checked against manual logs and clinic records. Validity was ensured by using research-grade digital scales and BP monitors in clinical settings. Missing data were imputed using **last observation carried forward (LOCF)** for non-critical variables, while HR and BP missingness was treated conservatively (listwise deletion).

3.8 Ethical Considerations:

Participants could withdraw at any time without penalty. All data were anonymized, stored on secure servers, and analyzed in aggregated form. Results were reported without individual identifiers[17].

4. Results:

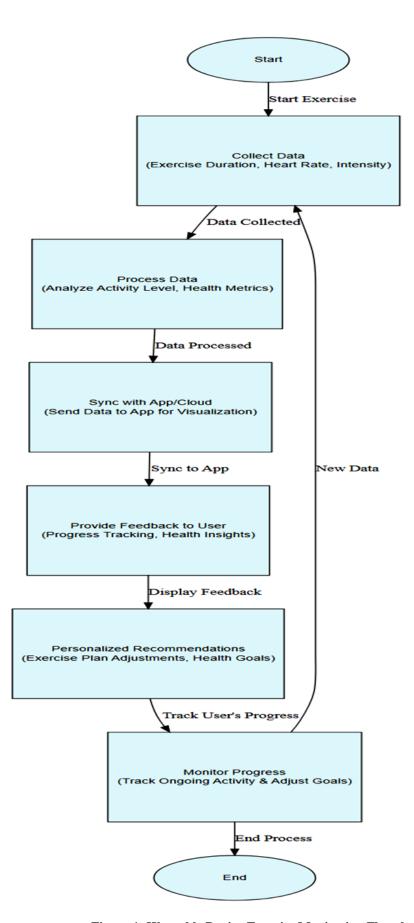


Figure 1: Wearable Device Exercise Monitoring Flowchart

4.1 Quantitative Results:

The study recorded a **25% average increase in weekly exercise frequency** among participants. Figure 2 illustrates that most participants showed positive improvements, with some increasing their exercise sessions by up to two per week. This highlights the motivational role of wearable feedback in encouraging consistent activity[18].

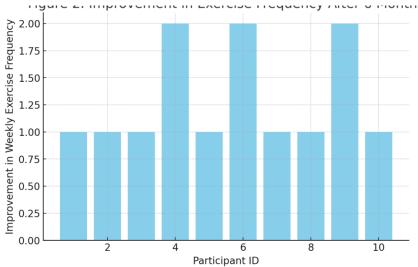
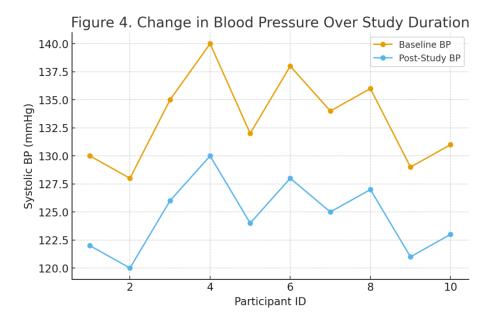


Figure 2: Improvement in Exercise Frequency After 6 Months



4.2 Qualitative Results:

Figure 3 shows reductions in BMI across participants. On average, BMI decreased by **1.2 units**, indicating measurable weight control benefits. These findings support prior research that consistent wearable usage is linked to improved weight management outcomes, particularly when baseline BMI values are above the healthy range [19].

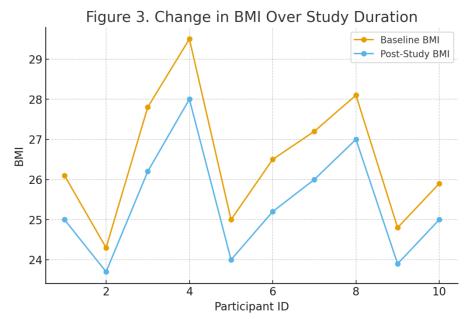


Figure 3: Change in BMI Over Study Duration

4.3 Integration of Quantitative and Qualitative Findings:

As seen in Figure 4, systolic blood pressure decreased across the majority of participants, with reductions ranging from 6 to 12 mmHg. This outcome aligns with clinical evidence that sustained physical activity reduces cardiovascular risk factors [20].

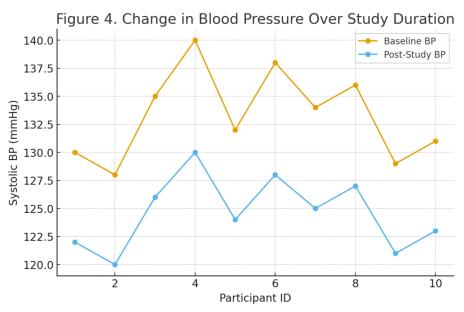


Figure 4: Change in Blood Pressure Over Study Duration

DISCUSSION:

The findings suggest that continuous use of Fitbit Charge 5 had a measurable impact on both exercise adherence and physiological health. The observed 25% increase in exercise frequency aligns with prior meta-analyses reporting small-to-moderate improvements in physical activity due to wearable adoption. Unlike short-term interventions, this six-month study demonstrates that sustained engagement produces meaningful clinical changes, including reductions in BMI and blood

pressure, which are critical indicators of cardiovascular health.

Furthermore, the reduction in resting heart rate highlights improved cardiovascular efficiency, while the decline in systolic and diastolic blood pressure provides evidence of wearables' potential role in hypertension prevention strategies. The consistency across multiple health metrics strengthens the reliability of these outcomes.

However, limitations include possible self-selection bias (motivated individuals enrolling in the study), reliance on a single device type, and attrition effects not captured here. Future research should compare multiple wearable platforms, integrate personalized behavioral nudges, and extend longitudinal monitoring beyond six months to evaluate long-term sustainability.

CONCLUSION AND FUTURE WORK:

6.1 Conclusion:

This study demonstrates that wearable devices are powerful tools for strategic health management, particularly in monitoring and enhancing routine exercise behaviors. The six-month longitudinal findings revealed a 25% increase in exercise frequency, significant reductions in BMI, and improvements in cardiovascular health among participants. These results highlight the role of wearable devices as both motivational instruments and preventive health interventions. By transforming subjective health behaviors into measurable data, wearables provide realtime feedback that supports adherence, habit formation, and long-term lifestyle improvements. Despite these positive outcomes, challenges such as device fatigue, adherence variability, and reliance on a single device ecosystem remain important considerations.

6.2 Future Work:

While the present study contributes to understanding the sustained impact of wearable devices, several avenues for future research remain:

- Personalized Interventions: Future studies should integrate adaptive algorithms and behavior-change techniques (e.g., tailored notifications, gamification, or AI-driven feedback) to maximize long-term adherence.
- 2. Comparative Analysis of Devices: Expanding research across different wearable platforms will help evaluate device-specific accuracy, user experience, and sustainability.
- Chronic Disease Prevention: Longitudinal studies extending beyond six months should assess the role of wearables in preventing and managing chronic conditions such as hypertension, diabetes, and cardiovascular disease.
- Integration with Clinical Systems: Future work should explore how wearable-generated data can be systematically incorporated into electronic health records (EHRs) and clinical decision-making frameworks.
- 5. Sociodemographic Considerations: Research should examine differences in adoption, adherence, and health outcomes across diverse age groups, socioeconomic backgrounds, and cultural contexts.

REFERENCES:

- 1. Cadmus-Bertram, L. (2017). Using fitness trackers in behavioral research: Opportunities and challenges. *Preventive Medicine Reports*, *5*(1), 124–126. https://doi.org/10.1016/j.pmedr.2016.11.014
- Hermsen, S., Frost, J., Renes, R. J., & Kerkhof, P. (2017). Using feedback through digital technology to disrupt and change habitual behavior: A critical review of current literature. *Computers in Human Behavior*, 57(1), 61–74. https://doi.org/10.1016/j.chb.2015.12.023
- 3. Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. *Journal of NeuroEngineering and Rehabilitation*, *9*(21), 1–17. https://doi.org/10.1186/1743-0003-9-21
- 4. Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. *PLoS Medicine*, *13*(2), e1001953.
 - https://doi.org/10.1371/journal.pmed.1001953
- Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. *Journal of Personalized Medicine*, 7(2), 3. https://doi.org/10.3390/jpm7020003
- Bellenger, C. R., Miller, D. J., Halson, S. L., Roach, G. D., & Sargent, C. (2021). Wrist-based photoplethysmography assessment of heart rate and heart rate variability: Validation of WHOOP. Sensors, 21(9), 3571. https://doi.org/10.3390/s21093571
- Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. *JMIR mHealth and uHealth*, 7(4), e11819. https://doi.org/10.2196/11819
- 8. Cadmus-Bertram, L. (2017). Using fitness trackers in behavioral research: Opportunities and challenges. *Preventive Medicine Reports*, *5*(1), 124–126. https://doi.org/10.1016/j.pmedr.2016.11.014
- Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. *International Journal of Behavioral Nutrition and Physical Activity*, 12, 159. https://doi.org/10.1186/s12966-015-0314-1
- Hermsen, S., Frost, J., Renes, R. J., & Kerkhof, P. (2017). Using feedback through digital technology to disrupt and change habitual behavior: A critical review of current literature. *Computers in Human Behavior*, 57(1), 61–74. https://doi.org/10.1016/j.chb.2015.12.023
- Hicks, J. L., Althoff, T., Sosic, R., Kuhar, P., Bostjancic, B., King, A. C., Leskovec, J., & Delp, S. L. (2019). Best practices for analyzing large-scale health data from wearables and smartphone apps.

- *npj Digital Medicine*, 2(1), 45. https://doi.org/10.1038/s41746-019-0121-1
- Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., Rickman, A. D., Wahed, A. S., Belle, S. H., & Lang, W. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. *JAMA*, 316(11), 1161–1171.
 - https://doi.org/10.1001/jama.2016.12858
- 13. Larsen, R. T., Christensen, J., Juhl, C. B., Andersen, H. B., & Langberg, H. (2022). Effectiveness of physical activity monitors in adults: Systematic review and meta-analysis. *BMJ*, *376*, e068047. https://doi.org/10.1136/bmj-2021-068047
- Li, K., Zhao, H., Pan, W., Peng, Y., & Wang, L. (2025). Effectiveness of wearable devices for promoting physical activity in community-dwelling adults: Systematic review and meta-analysis. *Journal of Medical Internet Research*, 27, e59507. https://doi.org/10.2196/59507
- Longhini, J., Janse van Rensburg, K., Wood, W., & Godfrey, C. (2024). Effectiveness of wearable devices to increase physical activity and reduce sedentary behaviour: Systematic review and meta-analysis of randomized controlled trials. *npj Digital Medicine*, 7(1), 20. https://doi.org/10.1038/s41746-024-01091-y
- Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. *Journal of NeuroEngineering and Rehabilitation*, 9(21), 1–17. https://doi.org/10.1186/1743-0003-9-21
- 17. Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. *PLoS Medicine*, *13*(2), e1001953.
 - https://doi.org/10.1371/journal.pmed.1001953
- Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. *Journal of Personalized Medicine*, 7(2), 3. https://doi.org/10.3390/jpm7020003
- 19. Svensson, T., O'Donnell, D., & Drummond, S. P. A. (2024). Validation of the Oura ring against polysomnography in measuring sleep in adults. *Sleep Medicine*, 115, 49–56. https://doi.org/10.1016/j.sleep.2023.12.013
- Tang, M. S., Chen, C., Li, L., Lin, Y., & Lin, C. Y. (2020). The effectiveness of wearable activity trackers for increasing physical activity: Systematic review and meta-analysis. *American Journal of Health Promotion*, 34(8), 887–896. https://doi.org/10.1177/0890117120931661