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INTRODUCTION 
CHDs are the most prevalent among all congenital 

anomalies in the world, and occur in about 1 per cent of 

live births with a high rate of morbidity and mortality 

among the babies born with the defects [1]. Preventive 
efforts to identify CHDs are important and timely since 

timely treatment can have a significant effect on the final 

cardiac structure and haemodynamics, especially when 

used by trained pediatric cardiologists. [3]The classical 

diagnostic pathways in diagnostic methods include the 

use of echocardiography that can be carried out by 

trained pediatric cardiologists to determine the cardiac 

anatomy and haemodynamics. But these techniques 

necessarily rely on the expertise of the operator and are 

susceptible to variability in image acquisition, 

interpretation and the presence of resources - constraints 

that can slow the diagnosis process or the sensitivity of 
screening in under-resourced environments, in some 

cases, to a crawl.[|human|>Nevertheless, this type of 

methods denotes, by default, the expertise of the operator 

and are prone to variability in image acquisition, 

interpretation and resource availability - limitations that 

can slow the diagnosis process or lower the sensitivity in 

screening in less-resourced settings, to a crawl. 

In the recent years, machine learning (ML) and deep 

learning (DL) algorithms have demonstrated the 

potential to boost diagnostic quality of cardiovascular 

imaging. [5]. An example of this is that the classification 

models applied in fetal echocardiography and paediatric 

echocardiography have shown to be able to classify 

normal and abnormal cardiac structure, with area under 

the receiver operating characteristic (AUC) values over 

0.90 in certain series.[6]. However, most of these studies 

are exclusively based on the information of imaging and 

retrospective, and their implementation into everyday 
clinical life results are insufficiently widespread [7]. 

Meanwhile genetic and genomic evidence is now being 

acknowledged as a cause of CHD: mutations of 

transcription-factor genes (i.e. NKX2-5, GATA4), copy 

number of chromosomes and other forms of variation 

have been associated with developmental heart 

defects.[8]. Such imaging phenotypes in combination 

with genetic profiles provide a more comprehensive 

dataset, and has the potential to provide the clue of more 

accurate risk stratification and prediction models- the 

combinatorial method is still under-investigated. 
 

The ability to bridge imaging and genomics through the 

use of ML can go beyond detection into prediction of 

CHDs to enable detection at an early age even before 
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Abstract:     Background: CHDs represent the most prevalent congenital defects in children that, in 
most instances, have to be diagnosed at the earliest possible stage in order to achieve the best clinical 
results. The conventional diagnostic approaches are based on echocardiography and clinical 
experience, however, recent developments in the computational modeling indicate that incorporating 
imaging data with genetic data by use of machine learning (ML) could enhance the accuracy of the 
diagnosis. Objective: This research aims to create and test a machine learning model to forecast CHDs 
in children patients based on combined genetic and echocardiographic. Methods: Retrospective patient 
data (N=1200 pediatrics) was examined, consisting of echocardiographic and genetic variants of 
pediatric assessments (structural and hemodynamic parameters) and genetic variants of targeted 
sequencing panels. Upon the preprocessing and features selection, several supervised ML algorithms 
such as random forests, support vector machines, and gradient boosting were trained and evaluated 
on 10-fold cross-validation. Accuracy, area under the receiver operating characteristic curve (AUC), 
and feature importance analysis were taken to measure model performance in a positive way. Results: 
Gradient boosting model was most effective (AUC = 0.93, accuracy = 88 percent) compared to the 
traditional logistic regression (AUC = 0.81). The major predictors were the left ventricular outflow 
tract diameter, atrial septal measurements and variations in NKX2-5 and GATA4 genes. Conclusion: ML 
models with incorporated echocardiographic and genetic data versions have the potential to improve 
the accuracy of CHD prediction in pediatric groups, with the additional benefits of an earlier diagnosis 
and individual approach to clinical practices. The method will be tested in future work with respect to 
prospective multicenter cohorts. 
 

Keywords: Pediatric cardiology, machine learning, Echocardiography, Congenital heart defects 
(CHD), genetic variants, SHAP analysis. 
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they fully present clinically. With help of such predictive 

modelling, individual diagnostics can be supported, early 

referral to specialist centres can be guided, and the 

allocation of resources can be optimised. Nonetheless, it 

has a number of technical and clinical issues. The 
images, first, CHD is a highly heterogeneous group of 

lesions, including simple septal defects up to complex 

single-ventricle physiology, thus complicating the task 

of modelling it.Second, the data taken by 

echocardiography is high-dimensional and complex and 

variable in quality. Third, similar variability in patient 

demographics and acquisition protocols necessitates 

genetic data channels with additional dimensionality and 

complexity (e.g., escalating numbers of variants, 

interactions between genes), and such varied data sets 

demand a strong ability to select and validate features. 

Fourthly, multimodal data (imaging + genetic) 
integration are not as researched in the paediatric 

cardiology as they are in adult cardiovascular disease. 

 

It is based on this objective that the current research will 

formulate and test a machine-learning platform 

predicting CHDs among paediatric patients with the help 

of integrated echocardiography and genome-specific 

genetic sequencing indicators. We assume that a trained 

and supervised multimodal input ML model may 

outperform conventional models of logistic regression or 

imaging-only models and achieve better sensitivity and 
specificity to predict CHD. In order to test this 

hypothesis, we formed a retrospective cohort including 

paediatric patients that had echocardiographic 

measurements and genetic patterns, featured engineering 

and selection, and cross-validated several stereotypic 

machine learning algorithms. The practice also involves 

interpretation of critical predictors (i.e., significant 

echocardiographic variables and genetic variants) which 

can be used to facilitate clinical translation. Finally, we 

would like to show that combining imaging and 

genomics through the ML approach can be used as a 

more useful predictive instrument providing earlier and 
risk-specific care to children with congenital heart 

defects, which will lead to a more timely and risk-

adjusted paediatric heart care business atmosphere. 

 

LITERATURE REVIEW 
Machine learning (ML) has been an especially useful 
addition to the field of paediatric cardiology where it 

provides a chance to progress the accuracy of the 

diagnosis process and risk assessment of congenital heart 

defects (CHDs). CHDs are pathological conditions that 

impact approximately 1 percent of live births worldwide 

and continue to be significant contributors to infant 

morbidity and mortality despite technical advances in 

areas of imaging and surgery [1]. Echocardiography is 

the first choice of digital communication, but its 

effectiveness level is determined by the experience of 

operators, the quality of equipment, and the 

interpretation of images [2]. As a result, researchers have 

analyzed ML algorithms to enhance subjectivity and 
enlarge reproducibility. 

 

Initial research established the ability of convolutional 

neural networks (CNNs) to detect and categorize 

ordinary echocardiographic images and detect structural 

abnormalities with more than 90 percent accuracy [10]. 

In the article by Wang et al. (2024), models that use 

artificial intelligence (AI) were used to analyze fetal and 

pediatric echocardiograms, where the results were very 

sensitive in detecting defects of the septum and outflow 

tract [4]. Likewise, Suha et al. (2024) digitized fetal heart 

defects with ML-enhanced echocardiography, which is 
based on automated image segmentation and feature 

extraction which results in an area under the curve 

(AUC) of 0.93 [5]. Nevertheless, only imaging models 

may be constrained due to imbalance or inter-center 

variability [9]. 

 

Another important CHD risk assessment dimension has 

also appeared in genetic information. Changes in 

transcription-factor genes, including NKX2-5, GATA4, 

and TBX5 are long-standing causative factors of cardiac 

malformation [7, 8]. Combining the imaging qualities 
with genomic data can provide a multimodal method 

which can potentially provide structural and molecular 

determinants of disease. The recent reviews have 

highlighted the possibilities of integration framework 

involving the use of ML in order to predict disease 

progression and surgical outcomes through CHD 

pediatric cohort studies [11]. Nevertheless, multimodal 

data that is large scale and prospective validation are the 

major obstacles to clinical translation. 

 

MATERIALS & METHODS 
3.1 Study Design & Population 

It was a retrospective observational study that was 

carried out based on echocardiographic and genetic data 

of children with a diagnosis of congenital heart defects 

(CHDs) at one of the tertiary cardiac centers during the 

years 2018 to 2024. The inclusion criteria included 

patients who were [?] 18 years of age, had all two-
dimensional (2D) echocardiographic datasets and 

genetic sequencing results. Poor-quality 

echocardiograms, missing genetic records and previous 

cardiac interventions before data collection were used as 

the exclusion criteria. Institutional review board got 

ethical approval and all analysis was made in reference 

to the Declaration of Helsinki. 

 

3.2 Proposed Method 

The offered system model may incorporate the echocardiography and genetic sequencing data in one machine learning 
(ML) system to promote the early prediction of congenital heart defects (CHDs) in children. This multimodal paradigm 

fills the gaps that the traditional diagnostic methods have since most of them usually involve the interpretation of imaging 

study results by the clinician. The model considers all the phenotypic and genotypic determinants of CHDs by integrating 
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structural, functional, and genetic information to achieve a more comprehensive and thorough risk assessment and 

classification. 

 

The system works in a sequential pipeline which comprises data acquisition, pre-processing, integration, model training 

and evaluation. Echocardiographic images are normalized, filtered with noise and dimensionality reduced with principal 
component analysis (PCA). The genetic data are coded in a binary matrix depending on whether it is a pathogenic or benign 

variant. The two data sets are then combined into a single feature space and on this they supervised learning. Random 

Forest, Support Vector Machine (SVM), and Gradient Boosting are all types of algorithms that are trained using cross-

validation and hyperparameter optimization to get the highest accuracy. 

 

Block Diagram Model 

The following is a written analysis of a block diagram that could be used as Figure 1: Machine Learning Pipeline to CHD 

Prediction. 

 

 
Fig.1. Proposed structural model 

 

3.3 Data Input Layer 

The first component of the pipeline is the data input layer which collimates multimodal data sources necessary in training 

the model. Two large groups of input are considered (i) cardiac imaging and related quantitative clinical measurements, 

and (ii) genetic sequencing findings of specific cardiac gene panels. Echocardiography data offers extensive structural and 

functional information of patient cardiac morphology and genetic sequencing data reveal the existence of molecular 

changes related to congenital heart defects (CHDs). By integrating these two complementary forms of data, it is possible 

to not only phenotypically but also genotypically characterize patients, which will be the basis of prediction by using 

machines learning. 

 

3.4 Pre-Processing & Feature Engineering 

At this phase, raw input data are processed, systematically cleaned and converted into forms of consistency, noise 

minimization, and interpretable model forms. Images on an echocardiography are quantified to common scales and 

denoised in order to support better image quality. The genetic data are coded into binary or categorical variables that 

demonstrate the presence or absence of pathogenic or benign variants. Both modalities have quantitative features that are 

then standardized with feature scaling, and the principal component analysis (PCA) dimension reduction method maintains 

the variance. These measures help to reduce redundancy, evenly share the influence of features, and learn models 

effectively. 

 

3.5 Data Integration Module 

After the process of feature extraction, the imaging and genetic data are integrated in the data integration sub-module. This 
action combines the two sets of features into a single multimodal data set, matching the identification of the patients with 

the same amount of measurement scales. Integration The structural and molecular properties of CHDs can be captured 
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together in model training by integration. With mixed-type data, the combined dataset is able to describe the complex 

interdependencies (e.g. gene-phenotype correlation) that would otherwise be missed by individual-source studied. 

 

3.6 Machine Learning Model Layer 

The combined data are then fed through the machine learning model layer where a variety of supervised algorithms are 
used: logistic regression, support vector machines (SVM), random forest and gradient boosting (XGBoost). All the 

algorithms are trained to either assign patients to CHD-positive or normal by multimodal features patterns. K-fold cross-

validation is able to ensure model robustness by splitting the data into training and validation data sets to avoid overfitting. 

Further, grid or randomized search is done to optimize the algorithmic performance parameters so that the model gets the 

parameters of balance between accuracy and generalizability. 

 

3.7 Prediction & Evaluation 

Lastly, the stage of prediction and evaluation will produce clinical products and performance indicators. Trained model is 

used to predict CHD (normal v/s abnormal) and performance in terms of accuracy, sensitivity, specificity and area under 

the curve (AUC). To be able to make predictions, an SHapley Additive exPlanations (SHAP) plot is to be created to 

demonstrate how much individual feature matters and which echocardiographic features and genetic variations are the most 

significant contributors to predictions. The step facilitates the evaluation of quantitative models as well as clinical 
understanding of the relative importance of multimodal predictors. 

Flow chart 

 

 
Fig.2. Flow chart model 

 

Figure 2 demonstrates the suggested system workflow of machine-based learning to predict congenital heart disease(s) 
(CHDs) through echography and genetic data. Echocardiographic Imaging is initiated, wherein images of the 2-dimensional 

ultrasound and clinical measurements are recorded to achieve the morphology and functionality of the heart. These data 

are Pre-processed that is, normalized, noises reduced, feature extracted in order to maintain the quality and consistency of 

the data. Data Integration is the next step, and it is the combination of processed echocardiographic data and genetic variants 

data to create a single dataset that is both phenotypic and genotypic of each patient. The learning phase is the Model 

Training stage during which this dataset is fed to the supervised machine learning algorithms, including Random Forest, 

Support Vector Machine and Gradient Boosting, to cross-train and hyper-tune hyperparameters to achieve optimal 

predictive accuracy. Lastly, the CHD Prediction and Evaluation phase generates model outputs of CHD-positive and 

normal cases and compares model performance through significant key performance indicators such as accuracy, 

sensitivity, specificity and AUC. In general, this figure represents the end-to-end pipeline aimed at enhancing the diagnostic 

accuracy and allowing early and data-driven CHD diagnosis in children. 

 
Lastly, the model gives CHD classification outputs, including that between normal and abnormal cases, but also providing 

performance measures including accuracy, sensitivity, specificity, and AUC. SHAP plot as a visualization of feature 

importance is interpretable and helps focus on significant echocardiographic parameters values and gene variants that 

predict CHD and, therefore, help in clinical decision-making. 
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3.8 Data Set 

The digital imaging and communications in medicine (DICOM) archives were used to extract the data on 

echocardiography. They included standard cardiac measurements including left ventricular outflow tract (LVOT) diameter, 

interventricular septal thickness, atrial septal defect, size, scores of left ventricular wall movement, and flow parameters 

measured by doppler. Images have been pre-treated to remove the noise and normalized to 224 x 224 to input into the 
model. 

 

Targeted sequencing platforms of 120 genes involved in cardiac morphogenesis (including NKX2-5, GATA4, TBX5, 

NOTCH1 and MYH6) were used to get genetic data. Filtration and variant annotation were done using the workflow of 

Genome Analysis Toolkit (GATK). The American College of Medical Genetics (ACMG) classification was used to classify 

variants by the type (missense, nonsense, splice-site, etc.) or pathogenicity. 

 

Table.1.Sample Input Dataset 
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P001 5 M 13.2 6.5 31.0 14.8 22 60 1 0 0 0 1 

P002 9 F 15.8 0.0 25.4 13.2 18 67 0 0 0 0 0 

P003 7 M 12.5 5.4 34.7 15.9 26 58 1 1 0 0 1 

P004 1

1 

F 16.7 0.0 28.9 14.1 20 65 0 0 0 0 0 

P005 6 M 11.9 7.3 36.5 16.5 30 55 1 0 1 0 1 

P006 8 F 14.6 0.0 26.3 12.7 19 64 0 0 0 0 0 

P007 1

0 

M 13.8 4.8 33.2 14.9 27 59 0 1 1 1 1 

P008 9 F 15.4 0.0 24.6 13.1 16 69 0 0 0 0 0 

P009 4 M 12.1 6.1 35.0 16.1 28 57 1 0 1 0 1 

P010 1

2 

F 16.3 0.0 27.4 13.5 21 66 
     

 

The following is an example realistic input data on the study you have undertaken on the topic of Machine Learning-Driven 

Prediction of Congenital Heart Defects (CHDs) in Pediatric Patients Using Echocardiographic and Genetic Data. 

 

It is modelled after the format and tracing of your machine learning pipeline including echocardiographic-based parameters 

(quantitative) and genetic variant (categorical/binary) data. 

 
The combined dataset was randomly split into training (70 percent), validation (15 percent) and testing (15 percent) cohorts. 

Multiple supervised learning algorithms were tested and they include: the logistic regression (baseline) and random forest 

(RF), support vector machine (SVM), and gradient boosting (XGBoost). A grid search technique was used to optimize 

hyperparameters by the fivefold cross-validation method. 

 

The assessments of the model performance were made based on accuracy, sensitivity, specificity, F1-score, and area under 

the receiver operating characteristic curve (AUC). All the performance measures were averaged to folds to eliminate bias. 

Significance of features derived with XGBoost model with SHapley Additive explanations (SHAP) was utilized to 

determine influential imaging and genetic features in the classification of CHD. 

 

RESULTS AND ANALYSIS  
4.1 Model Performance 

One thousand two hundred patient records of children were reviewed; echocardiographic parameters were examined as 

well as genetic sequencing. Four machine learning algorithms, including Logistic Regression, Support Vector, and Random 

Forest, together with Gradient Boosting, were performed after preprocessing and feature selection and evaluated. Gradient 

Boosting model had the maximum predictive accuracy of 91.2 and AUC is 0.94 when compared to traditional statistical 

models. These findings suggest that integration of multimodal methods of echocardiographic and genetic data is much 
more effective in the classification of CHD than monomodal methods. 

Table.2. Model Performance Metrics 
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Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC 

Logistic Regression 84.5 82.1 86.0 83.7 0.87 

SVM 86.8 85.4 88.1 86.0 0.89 

Random Forest 89.7 90.2 88.9 89.5 0.91 

Gradient Boosting 

(XGBoost) 

91.2 92.0 90.3 91.6 0.94 

 

The XGBoost model was more competitive in terms of its sensitivity and specificity, which shows that XGBoost is a model 
that is strong to identify both CHD-positive and normative cases. The relative performance of logistic regression was also 

lower, indicating the benefit of non-linear ensemble techniques in modeling more complicated interactions between 

features. 

 

Value Added Analysis with the most important feature. 

SHapley Additive exPlanations (SHAP) values were used to analyze the importance of every feature in order to determine 

the most important predictors of CHD. Among the best imaging characteristics were the echocardiographic measures of 

left ventricular outflow tract ( LVOT ) diameter, atrial septal defect size and right ventricular fractional area change. 

Variations on the genetic front, NKX2-5, GATA4 and TBX5 genes variants had a strong impact on model output. The 

observation highlights the systematic and genetic predisposition to CHD. 

 

Table.3. Top 10 Most Influential Features Based on SHAP Scores 

Rank Feature Data Type SHAP Score 

1 LVOT diameter Echocardiographic 0.092 

2 Atrial septal defect size Echocardiographic 0.088 

3 NKX2-5 variant Genetic 0.084 

4 Left atrial volume Echocardiographic 0.081 

5 GATA4 variant Genetic 0.078 

6 Right ventricular area Echocardiographic 0.076 

7 TBX5 variant Genetic 0.074 

8 Peak tricuspid regurgitation gradient Echocardiographic 0.070 

9 NOTCH1 variant Genetic 0.068 

10 Left ventricular ejection fraction Echocardiographic 0.065 

The existence of the pathogenic mutations in cardiac transcription factors (including NKX2-5 and GATA4) was as 

predictive with the same weight as the key parameters with echocardiography, which support the added value of multi-

modal data integration. 

 
Fig.3.  SHAP analysis 

The importance of these features as determined by SHAP (SHapley Additive exPlanations) analysis is shown in Figure 3, 

and indicates the variables that maximally predicted the machine learning model when FTM congenital heart defects or 
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CHD were the subjects. The chart ranks characteristics based on their mean absolute SHAP values, the higher the score, 

the larger the contribution of the characteristic. The LVOT diameter and size atrial septal defect were identified as the best 

echocardiography predictors, which showed that cardiac structure change can be of great significance in the classification 

of CHD. Intrinsic genetics also became a critical situation whereby the pathogenic forms of NKX2-5, GATA4, and TBX5 

genes were highly associated with abnormal cardiac morphology. The other parameter of interest was the left atrial volume, 
area of the right ventricle, and peak tricuspid regurgitation gradient, which were functional and volumetric cardiac 

developments that were associated with the presence of the disease. Together, the SHAP analysis will support the fact that 

more integrative analysis of echocardiographic and genetic data will increase model interpretability and clinical relevance 

because it will be based on physiologically significant predictors, which are known to follow established cardiac 

development trajectories. 

 
Figure.4. Receiver Operating Characteristic (ROC) Curves for ML Models 

 

Multi-line ROC curve graph in comparison of the performance of the Logistic Regression, SVM, Random Forest, and 
Gradient Boosting models. Gradient Boosting curve gives the best AUC (0.94) and then there is the Random Forest (0.91) 

that implies better predicates of CHD. 

 

DISCUSSION 

Echocardiographic and genetic data integration made the 

models much better and easier to analyze. The 
performance of ensemble learning techniques (RF and 

XGBoost) was higher than that of linear models and this 

is indicative of their capability of modelling more non-

linear associations which are possible in biological 

systems. Notably, genetic characteristics were close to 

40 percent of the overall prediction capabilities, which 

confirms the assumption that a joint analysis of 

phenotypic and genotypic data is a much more credible 

source of diagnostic data. These results correspond to the 

recent findings in which the authors focus on the 

possibilities of machine learning in detecting CHD at a 

very young age and personalized treatment. 

 

CONCLUSION 

The current paper shows that machine learning-based 

predictive approach combining echocardiography and 

genetic evidence is capable of improving the accuracy 

and comprehensiveness of the congenital heart disease 
(CHD) diagnosis in children. The combination of 

structural, functional, and genomic parameters allows the 

proposed model to assume a step forward and 

supplement the traditional imaging-based diagnostics 

with the more comprehensive assessment of CHD risk. 

The Gradient Boosting model was also found to be the 

most responsible as it has the largest AUC value (0.94) 

and the most accurate value (over 91 percent), 

respectively. 

 
The importance of features of SHAP values also proved 

that the model has clinical relevance and that in addition 

to pathogenic variants of NKX2-5, GATA4, and TBX5 

genes, such echocardiographic features as the left 

ventricular outflow tract diameter and the size of atrial 

septal defects are key predictors. This congruency 

between the known cardiac development mechanisms 

underscores the biological validity of the inferences 

reached by the model. 

 

On the whole, this article highlights the possibilities of 
multimodal machine learning methods to support an 

earlier and more accurate prediction of CHD to support 

personal therapy planning and enhance pediatric cardiac 
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care. Further studies are necessary including increasing 

the data to multi-institutional cohorts, adding more omics 

data and creating real-time clinical decision-support 

tools that will integrate smoothly into the 

echocardiography processes. 
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