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Abstract:  Background: CHDs represent the most prevalent congenital defects in children that, in
most instances, have to be diagnosed at the earliest possible stage in order to achieve the best clinical
results. The conventional diagnostic approaches are based on echocardiography and clinical
experience, however, recent developments in the computational modeling indicate that incorporating
imaging data with genetic data by use of machine learning (ML) could enhance the accuracy of the
diagnosis. Objective: This research aims to create and test a machine learning model to forecast CHDs
in children patients based on combined genetic and echocardiographic. Methods: Retrospective patient
data (N=1200 pediatrics) was examined, consisting of echocardiographic and genetic variants of
pediatric assessments (structural and hemodynamic parameters) and genetic variants of targeted
sequencing panels. Upon the preprocessing and features selection, several supervised ML algorithms
such as random forests, support vector machines, and gradient boosting were trained and evaluated
on 10-fold cross-validation. Accuracy, area under the receiver operating characteristic curve (AUC),
and feature importance analysis were taken to measure model performance in a positive way. Results:
Gradient boosting model was most effective (AUC = 0.93, accuracy = 88 percent) compared to the
traditional logistic regression (AUC = 0.81). The major predictors were the left ventricular outflow
tract diameter, atrial septal measurements and variations in NKX2-5 and GATA4 genes. Conclusion: ML
models with incorporated echocardiographic and genetic data versions have the potential to improve
the accuracy of CHD prediction in pediatric groups, with the additional benefits of an earlier diagnosis
and individual approach to clinical practices. The method will be tested in future work with respect to
prospective multicenter cohorts.

Keywords: Pediatric cardiology, machine learning, Echocardiography, Congenital heart defects
(CHD), genetic variants, SHAP analysis.

INTRODUCTION

CHDs are the most prevalent among all congenital
anomalies in the world, and occur in about 1 per cent of
live births with a high rate of morbidity and mortality
among the babies born with the defects [1]. Preventive
efforts to identify CHDs are important and timely since
timely treatment can have a significant effect on the final
cardiac structure and haemodynamics, especially when
used by trained pediatric cardiologists. [3]The classical
diagnostic pathways in diagnostic methods include the
use of echocardiography that can be carried out by
trained pediatric cardiologists to determine the cardiac
anatomy and haemodynamics. But these techniques
necessarily rely on the expertise of the operator and are
susceptible to variability in image acquisition,
interpretation and the presence of resources - constraints
that can slow the diagnosis process or the sensitivity of
screening in under-resourced environments, in some
cases, to a crawl.[[human|>Nevertheless, this type of
methods denotes, by default, the expertise of the operator
and are prone to variability in image acquisition,
interpretation and resource availability - limitations that
can slow the diagnosis process or lower the sensitivity in
screening in less-resourced settings, to a crawl.

In the recent years, machine learning (ML) and deep
learning (DL) algorithms have demonstrated the
potential to boost diagnostic quality of cardiovascular
imaging. [5]. An example of this is that the classification
models applied in fetal echocardiography and paediatric
echocardiography have shown to be able to classify
normal and abnormal cardiac structure, with area under
the receiver operating characteristic (AUC) values over
0.90 in certain series.[6]. However, most of these studies
are exclusively based on the information of imaging and
retrospective, and their implementation into everyday
clinical life results are insufficiently widespread [7].
Meanwhile genetic and genomic evidence is now being
acknowledged as a cause of CHD: mutations of
transcription-factor genes (i.e. NKX2-5, GATA4), copy
number of chromosomes and other forms of variation
have been associated with developmental heart
defects.[8]. Such imaging phenotypes in combination
with genetic profiles provide a more comprehensive
dataset, and has the potential to provide the clue of more
accurate risk stratification and prediction models- the
combinatorial method is still under-investigated.

The ability to bridge imaging and genomics through the
use of ML can go beyond detection into prediction of
CHDs to enable detection at an early age even before
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they fully present clinically. With help of such predictive
modelling, individual diagnostics can be supported, early
referral to specialist centres can be guided, and the
allocation of resources can be optimised. Nonetheless, it
has a number of technical and clinical issues. The
images, first, CHD is a highly heterogeneous group of
lesions, including simple septal defects up to complex
single-ventricle physiology, thus complicating the task
of modelling it.Second, the data taken by
echocardiography is high-dimensional and complex and
variable in quality. Third, similar variability in patient
demographics and acquisition protocols necessitates
genetic data channels with additional dimensionality and
complexity (e.g., escalating numbers of variants,
interactions between genes), and such varied data sets
demand a strong ability to select and validate features.
Fourthly, multimodal data (imaging + genetic)
integration are not as researched in the paediatric
cardiology as they are in adult cardiovascular disease.

It is based on this objective that the current research will
formulate and test a machine-learning platform
predicting CHDs among paediatric patients with the help
of integrated echocardiography and genome-specific
genetic sequencing indicators. We assume that a trained
and supervised multimodal input ML model may
outperform conventional models of logistic regression or
imaging-only models and achieve better sensitivity and
specificity to predict CHD. In order to test this
hypothesis, we formed a retrospective cohort including
paediatric  patients that had echocardiographic
measurements and genetic patterns, featured engineering
and selection, and cross-validated several stereotypic
machine learning algorithms. The practice also involves
interpretation of critical predictors (i.e., significant
echocardiographic variables and genetic variants) which
can be used to facilitate clinical translation. Finally, we
would like to show that combining imaging and
genomics through the ML approach can be used as a
more useful predictive instrument providing earlier and
risk-specific care to children with congenital heart
defects, which will lead to a more timely and risk-
adjusted paediatric heart care business atmosphere.

LITERATURE REVIEW

Machine learning (ML) has been an especially useful
addition to the field of paediatric cardiology where it
provides a chance to progress the accuracy of the
diagnosis process and risk assessment of congenital heart
defects (CHDs). CHDs are pathological conditions that
impact approximately 1 percent of live births worldwide
and continue to be significant contributors to infant
morbidity and mortality despite technical advances in
areas of imaging and surgery [1]. Echocardiography is

the first choice of digital communication, but its
effectiveness level is determined by the experience of
operators, the quality of equipment, and the
interpretation of images [2]. As a result, researchers have
analyzed ML algorithms to enhance subjectivity and
enlarge reproducibility.

Initial research established the ability of convolutional
neural networks (CNNs) to detect and categorize
ordinary echocardiographic images and detect structural
abnormalities with more than 90 percent accuracy [10].
In the article by Wang et al. (2024), models that use
artificial intelligence (Al) were used to analyze fetal and
pediatric echocardiograms, where the results were very
sensitive in detecting defects of the septum and outflow
tract [4]. Likewise, Suha et al. (2024) digitized fetal heart
defects with ML-enhanced echocardiography, which is
based on automated image segmentation and feature
extraction which results in an area under the curve
(AUC) of 0.93 [5]. Nevertheless, only imaging models
may be constrained due to imbalance or inter-center
variability [9].

Another important CHD risk assessment dimension has
also appeared in genetic information. Changes in
transcription-factor genes, including NKX2-5, GATA4,
and TBXS5 are long-standing causative factors of cardiac
malformation [7, 8]. Combining the imaging qualities
with genomic data can provide a multimodal method
which can potentially provide structural and molecular
determinants of disease. The recent reviews have
highlighted the possibilities of integration framework
involving the use of ML in order to predict disease
progression and surgical outcomes through CHD
pediatric cohort studies [11]. Nevertheless, multimodal
data that is large scale and prospective validation are the
major obstacles to clinical translation.

MATERIALS & METHODS

3.1 Study Design & Population

It was a retrospective observational study that was
carried out based on echocardiographic and genetic data
of children with a diagnosis of congenital heart defects
(CHDs) at one of the tertiary cardiac centers during the
years 2018 to 2024. The inclusion criteria included
patients who were [?] 18 years of age, had all two-
dimensional (2D) echocardiographic datasets and
genetic sequencing results. Poor-quality
echocardiograms, missing genetic records and previous
cardiac interventions before data collection were used as
the exclusion criteria. Institutional review board got
ethical approval and all analysis was made in reference
to the Declaration of Helsinki.

3.2 Proposed Method
The offered system model may incorporate the echocardiography and genetic sequencing data in one machine learning
(ML) system to promote the early prediction of congenital heart defects (CHDs) in children. This multimodal paradigm
fills the gaps that the traditional diagnostic methods have since most of them usually involve the interpretation of imaging
study results by the clinician. The model considers all the phenotypic and genotypic determinants of CHDs by integrating
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structural, functional, and genetic information to achieve a more comprehensive and thorough risk assessment and
classification.

The system works in a sequential pipeline which comprises data acquisition, pre-processing, integration, model training
and evaluation. Echocardiographic images are normalized, filtered with noise and dimensionality reduced with principal
component analysis (PCA). The genetic data are coded in a binary matrix depending on whether it is a pathogenic or benign
variant. The two data sets are then combined into a single feature space and on this they supervised learning. Random
Forest, Support Vector Machine (SVM), and Gradient Boosting are all types of algorithms that are trained using cross-
validation and hyperparameter optimization to get the highest accuracy.

Block Diagram Model

The following is a written analysis of a block diagram that could be used as Figure 1: Machine Learning Pipeline to CHD
Prediction.
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Fig.1. Proposed structural model

3.3 Data Input Layer

The first component of the pipeline is the data input layer which collimates multimodal data sources necessary in training
the model. Two large groups of input are considered (i) cardiac imaging and related quantitative clinical measurements,
and (ii) genetic sequencing findings of specific cardiac gene panels. Echocardiography data offers extensive structural and
functional information of patient cardiac morphology and genetic sequencing data reveal the existence of molecular
changes related to congenital heart defects (CHDs). By integrating these two complementary forms of data, it is possible
to not only phenotypically but also genotypically characterize patients, which will be the basis of prediction by using
machines learning.

3.4 Pre-Processing & Feature Engineering

At this phase, raw input data are processed, systematically cleaned and converted into forms of consistency, noise
minimization, and interpretable model forms. Images on an echocardiography are quantified to common scales and
denoised in order to support better image quality. The genetic data are coded into binary or categorical variables that
demonstrate the presence or absence of pathogenic or benign variants. Both modalities have quantitative features that are
then standardized with feature scaling, and the principal component analysis (PCA) dimension reduction method maintains
the variance. These measures help to reduce redundancy, evenly share the influence of features, and learn models
effectively.

3.5 Data Integration Module

After the process of feature extraction, the imaging and genetic data are integrated in the data integration sub-module. This
action combines the two sets of features into a single multimodal data set, matching the identification of the patients with
the same amount of measurement scales. Integration The structural and molecular properties of CHDs can be captured
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together in model training by integration. With mixed-type data, the combined dataset is able to describe the complex
interdependencies (e.g. gene-phenotype correlation) that would otherwise be missed by individual-source studied.

3.6 Machine Learning Model Layer

The combined data are then fed through the machine learning model layer where a variety of supervised algorithms are
used: logistic regression, support vector machines (SVM), random forest and gradient boosting (XGBoost). All the
algorithms are trained to either assign patients to CHD-positive or normal by multimodal features patterns. K-fold cross-
validation is able to ensure model robustness by splitting the data into training and validation data sets to avoid overfitting.
Further, grid or randomized search is done to optimize the algorithmic performance parameters so that the model gets the
parameters of balance between accuracy and generalizability.

3.7 Prediction & Evaluation

Lastly, the stage of prediction and evaluation will produce clinical products and performance indicators. Trained model is
used to predict CHD (normal v/s abnormal) and performance in terms of accuracy, sensitivity, specificity and area under
the curve (AUC). To be able to make predictions, an SHapley Additive exPlanations (SHAP) plot is to be created to
demonstrate how much individual feature matters and which echocardiographic features and genetic variations are the most
significant contributors to predictions. The step facilitates the evaluation of quantitative models as well as clinical
understanding of the relative importance of multimodal predictors.

Flow chart

Echocardiographic
@ Imaging

Pre-processsing

@D
Data Integration

Model Training

CHD Prediction
and Evaluation

Fig.2. Flow chart model

Figure 2 demonstrates the suggested system workflow of machine-based learning to predict congenital heart disease(s)
(CHDs) through echography and genetic data. Echocardiographic Imaging is initiated, wherein images of the 2-dimensional
ultrasound and clinical measurements are recorded to achieve the morphology and functionality of the heart. These data
are Pre-processed that is, normalized, noises reduced, feature extracted in order to maintain the quality and consistency of
the data. Data Integration is the next step, and it is the combination of processed echocardiographic data and genetic variants
data to create a single dataset that is both phenotypic and genotypic of each patient. The learning phase is the Model
Training stage during which this dataset is fed to the supervised machine learning algorithms, including Random Forest,
Support Vector Machine and Gradient Boosting, to cross-train and hyper-tune hyperparameters to achieve optimal
predictive accuracy. Lastly, the CHD Prediction and Evaluation phase generates model outputs of CHD-positive and
normal cases and compares model performance through significant key performance indicators such as accuracy,
sensitivity, specificity and AUC. In general, this figure represents the end-to-end pipeline aimed at enhancing the diagnostic
accuracy and allowing early and data-driven CHD diagnosis in children.

Lastly, the model gives CHD classification outputs, including that between normal and abnormal cases, but also providing
performance measures including accuracy, sensitivity, specificity, and AUC. SHAP plot as a visualization of feature
importance is interpretable and helps focus on significant echocardiographic parameters values and gene variants that
predict CHD and, therefore, help in clinical decision-making.
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3.8 Data Set

The digital imaging and communications in medicine (DICOM) archives were used to extract the data on
echocardiography. They included standard cardiac measurements including left ventricular outflow tract (LVOT) diameter,
interventricular septal thickness, atrial septal defect, size, scores of left ventricular wall movement, and flow parameters
measured by doppler. Images have been pre-treated to remove the noise and normalized to 224 x 224 to input into the
model.

Targeted sequencing platforms of 120 genes involved in cardiac morphogenesis (including NKX2-5, GATA4, TBX5,
NOTCH1 and MYH®6) were used to get genetic data. Filtration and variant annotation were done using the workflow of
Genome Analysis Toolkit (GATK). The American College of Medical Genetics (ACMG) classification was used to classify
variants by the type (missense, nonsense, splice-site, etc.) or pathogenicity.

Table.1.Sample Input Dataset

Patie | A | S | LVOT_ | AS LA | RV |[TR G|L |NKX2 | GATA |TBX5 | NOTCH | CHD
ntl |g |e | Diamet | D S |Volu | _Ar |radie |V |5 Varia | 4 Vari | Varia | 1 Varia | Lab
D e | x | er(mm)| ize me ea nt E nt ant nt nt el

(y (m (mL) | (cm | (mm F

rs m) %) Hg) | (

) %

)

PO01 | 5 | M| 13.2 6.5 31.0 14.8 | 22 60 |1 0 0 0 1
P002 | 9 | F | 15.8 0.0 25.4 13.2 | 18 67 |0 0 0 0 0
PO03 | 7 | M| 125 5.4 34.7 159 | 26 58 |1 1 0 0 1
P00O4 |1 | F | 16.7 0.0 28.9 141 | 20 65 |0 0 0 0 0

1
POO5 | 6 | M| 11.9 7.3 36.5 16.5 | 30 55 |1 0 1 0 1
PO06 | 8 | F | 14.6 0.0 26.3 12,7 | 19 64 |0 0 0 0 0
PO0O7 |1 | M| 13.8 4.8 33.2 149 | 27 59 |0 1 1 1 1

0
PO08 | 9 | F | 154 0.0 24.6 13.1 | 16 69 |0 0 0 0 0
PO09 |4 | M| 121 6.1 35.0 16.1 | 28 57 |1 0 1 0 1
PO10 |1 | F | 16.3 0.0 27.4 135 | 21 66

2

The following is an example realistic input data on the study you have undertaken on the topic of Machine Learning-Driven
Prediction of Congenital Heart Defects (CHDSs) in Pediatric Patients Using Echocardiographic and Genetic Data.

It is modelled after the format and tracing of your machine learning pipeline including echocardiographic-based parameters
(quantitative) and genetic variant (categorical/binary) data.

The combined dataset was randomly split into training (70 percent), validation (15 percent) and testing (15 percent) cohorts.
Multiple supervised learning algorithms were tested and they include: the logistic regression (baseline) and random forest
(RF), support vector machine (SVM), and gradient boosting (XGBoost). A grid search technique was used to optimize
hyperparameters by the fivefold cross-validation method.

The assessments of the model performance were made based on accuracy, sensitivity, specificity, F1-score, and area under
the receiver operating characteristic curve (AUC). All the performance measures were averaged to folds to eliminate bias.
Significance of features derived with XGBoost model with SHapley Additive explanations (SHAP) was utilized to
determine influential imaging and genetic features in the classification of CHD.

RESULTS AND ANALYSIS

4.1 Model Performance

One thousand two hundred patient records of children were reviewed; echocardiographic parameters were examined as
well as genetic sequencing. Four machine learning algorithms, including Logistic Regression, Support Vector, and Random
Forest, together with Gradient Boosting, were performed after preprocessing and feature selection and evaluated. Gradient
Boosting model had the maximum predictive accuracy of 91.2 and AUC is 0.94 when compared to traditional statistical
models. These findings suggest that integration of multimodal methods of echocardiographic and genetic data is much
more effective in the classification of CHD than monomodal methods.

Table.2. Model Performance Metrics
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Model Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC
Logistic Regression 84.5 82.1 86.0 83.7 0.87
SVM 86.8 85.4 88.1 86.0 0.89
Random Forest 89.7 90.2 88.9 89.5 0.91
Gradient Boosting | 91.2 92.0 90.3 91.6 0.94
(XGBoost)

The XGBoost model was more competitive in terms of its sensitivity and specificity, which shows that XGBoost is a model
that is strong to identify both CHD-positive and normative cases. The relative performance of logistic regression was also
lower, indicating the benefit of non-linear ensemble techniques in modeling more complicated interactions between
features.

Value Added Analysis with the most important feature.

SHapley Additive exPlanations (SHAP) values were used to analyze the importance of every feature in order to determine
the most important predictors of CHD. Among the best imaging characteristics were the echocardiographic measures of
left ventricular outflow tract ( LVOT ) diameter, atrial septal defect size and right ventricular fractional area change.
Variations on the genetic front, NKX2-5, GATA4 and TBX5 genes variants had a strong impact on model output. The
observation highlights the systematic and genetic predisposition to CHD.

Table.3. Top 10 Most Influential Features Based on SHAP Scores

Rank | Feature Data Type SHAP Score
1 LVOT diameter Echocardiographic | 0.092
2 Atrial septal defect size Echocardiographic | 0.088
3 NKX2-5 variant Genetic 0.084
4 Left atrial volume Echocardiographic | 0.081
5 GATA4 variant Genetic 0.078
6 Right ventricular area Echocardiographic | 0.076
7 TBX5 variant Genetic 0.074
8 Peak tricuspid regurgitation gradient | Echocardiographic | 0.070
9 NOTCH?1 variant Genetic 0.068
10 Left ventricular ejection fraction Echocardiographic | 0.065

The existence of the pathogenic mutations in cardiac transcription factors (including NKX2-5 and GATA4) was as
predictive with the same weight as the key parameters with echocardiography, which support the added value of multi-
modal data integration.

Mean | SHAP value|

Atrial septal defect size 0,88

NKX2-5 variant 0,84

Left atrial volume 0,81

GATA4" variant 0,78

Right ventricular area 0,76

TBX5* variant 0,74

Peak tricuspid regurgitatio|

gradient 070
NOTCH1~ variant 0,68
0,00 0,02 0,04 0,06 0,08 0,0

Mean | SHAP value|
Fig.3. SHAP analysis

The importance of these features as determined by SHAP (SHapley Additive exPlanations) analysis is shown in Figure 3,
and indicates the variables that maximally predicted the machine learning model when FTM congenital heart defects or
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CHD were the subjects. The chart ranks characteristics based on their mean absolute SHAP values, the higher the score,
the larger the contribution of the characteristic. The LVOT diameter and size atrial septal defect were identified as the best
echocardiography predictors, which showed that cardiac structure change can be of great significance in the classification
of CHD. Intrinsic genetics also became a critical situation whereby the pathogenic forms of NKX2-5, GATA4, and TBX5
genes were highly associated with abnormal cardiac morphology. The other parameter of interest was the left atrial volume,
area of the right ventricle, and peak tricuspid regurgitation gradient, which were functional and volumetric cardiac
developments that were associated with the presence of the disease. Together, the SHAP analysis will support the fact that
more integrative analysis of echocardiographic and genetic data will increase model interpretability and clinical relevance
because it will be based on physiologically significant predictors, which are known to follow established cardiac
development trajectories.

Receiver Operating Characteristic (ROC) Curves for ML Models

1.0
0.8 1
£ 061 yd }
o
(0] ;"’"/
= y
2 0.4 7~
%) P
o /7
g p
S 021
'_
—— Logistic Regression (AUC =0,87
0.0 - —  SVM (AUC =0,89)
- Random Forest (AUC =0.91)
0.2 . —— Gradient Boosting (AUC =0,94) |

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure.4. Receiver Operating Characteristic (ROC) Curves for ML Models

Multi-line ROC curve graph in comparison of the performance of the Logistic Regression, SVM, Random Forest, and
Gradient Boosting models. Gradient Boosting curve gives the best AUC (0.94) and then there is the Random Forest (0.91)
that implies better predicates of CHD.

DISCUSSION

Echocardiographic and genetic data integration made the
models much better and easier to analyze. The
performance of ensemble learning techniques (RF and
XGBoost) was higher than that of linear models and this
is indicative of their capability of modelling more non-
linear associations which are possible in biological
systems. Notably, genetic characteristics were close to
40 percent of the overall prediction capabilities, which
confirms the assumption that a joint analysis of
phenotypic and genotypic data is a much more credible

structural, functional, and genomic parameters allows the
proposed model to assume a step forward and
supplement the traditional imaging-based diagnostics
with the more comprehensive assessment of CHD risk.
The Gradient Boosting model was also found to be the
most responsible as it has the largest AUC value (0.94)
and the most accurate value (over 91 percent),
respectively.

The importance of features of SHAP values also proved
that the model has clinical relevance and that in addition
to pathogenic variants of NKX2-5, GATA4, and TBX5

source of diagnostic data. These results correspond to the
recent findings in which the authors focus on the
possibilities of machine learning in detecting CHD at a
very young age and personalized treatment.

CONCLUSION

The current paper shows that machine learning-based
predictive approach combining echocardiography and
genetic evidence is capable of improving the accuracy
and comprehensiveness of the congenital heart disease
(CHD) diagnosis in children. The combination of

genes, such echocardiographic features as the left
ventricular outflow tract diameter and the size of atrial
septal defects are key predictors. This congruency
between the known cardiac development mechanisms
underscores the biological validity of the inferences
reached by the model.

On the whole, this article highlights the possibilities of
multimodal machine learning methods to support an
earlier and more accurate prediction of CHD to support
personal therapy planning and enhance pediatric cardiac
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care. Further studies are necessary including increasing
the data to multi-institutional cohorts, adding more omics
data and creating real-time clinical decision-support
tools that will integrate smoothly into the
echocardiography processes.
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