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INTRODUCTION 
The remarkable growth of the electronics industry in 
both complexity and annual device production can be 
attributed to various advancements in the field of 
VLSI. The evolution of the chip design industry has 
spurred substantial progress in areas such as 
telecommunications, control systems, consumer 
electronics, high-performance computing, missile 
technology, and more. These applications experience 
processing speeds and application access that are 
unheard of, and VLSI makes this all feasible. As long 
as there are inventions and a very fast rate of growth 
in the VLSI sector to support those inventions, there 
will always be a market for these products. Because 
of the substantial number of cells and the precision 
needed for their placement in Very Large-Scale 
Integration (VLSI) chips, the idea of traditional design 
that is done manually is rendered obsolete. Any 
designer would find it extremely difficult to complete 
a project of this size without the aid of technology.  
 
  Electronic Design Automation (EDA) tools were 
introduced as a result, assisting designers in 
increasing design and verification efficiency. The 
development of several tools for each level of VLSI is 
the main goal of EDA. However, having EDA tools 
alone is insufficient for design because it necessitates 
a fundamental understanding of VLSI and its 

characteristics. This may aid in bridging the gap 
between specification and chip production. By 
defining a problem and an algorithm for the same 
problem, designers should possess the capability to 
develop a computer program that automates physical 
design. DRL is a sophisticated framework that unites 
two potent concepts: reinforcement learning and 
deep learning. This fusion equips AI agents with the 
capability to comprehend and navigate complex 
environments, rendering it highly effective for 
tackling intricate real-world problems.  
   
In the realm of reinforcement learning, agents 
acquire decision making abilities by engaging with an 
environment. They take actions, observe the 
consequences, and refine their strategies based on 
the received rewards or penalties. This iterative 
process of learning through experimentation 
ultimately leads to the optimization of the agent's 
behavior. Conversely, deep learning harnesses neural 
networks to handle intricate patterns and 
representations within data. These networks are 
structured into multiple layers, each progressively 
refining features extracted from the input data. This 
hierarchical architecture empowers deep learning 
models to capture and understand intricate 
relationships inherent in the data. Within the domain 
of DRL, deep learning is employed to enhance 
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Abstract:     The rapid advancement of Very Large-Scale Integration (VLSI) technology has 
necessitated innovative approaches to optimize chip design processes, particularly in time-driven 
placement. This paper presents a novel methodology using Deep Reinforcement Learning (DRL) to 
enhance VLSI placement parameters, aiming to minimize wirelength and improve overall design 
efficiency. Traditional placement techniques often rely on manual tuning, which is time-consuming 
and suboptimal. By integrating reinforcement learning with deep neural networks, our approach 
automates parameter optimization, reducing human intervention and accelerating design convergence. 
The proposed framework employs an actor-critic architecture, combining policy-based and value-based 
reinforcement learning to dynamically adjust placement parameters. Key components include a state 
space encapsulating netlist features and placement parameters, a streamlined action set for parameter 
adjustments, and a normalized reward function based on Half-Perimeter Wire Length (HPWL). The 
model utilizes Long Short-Term Memory (LSTM) and attention mechanisms to handle complex 
dependencies and recurrent optimization processes. Experimental results on benchmark designs 
demonstrate significant improvements, with our DRL agent achieving up to an 8.7% reduction in HPWL 
compared to human baselines and outperforming existing methods like Multi-Armed Bandit (MAB) and 
traditional RL models. The approach also generalizes well to unseen netlists, showcasing its robustness.  
 

Keywords:  Placement Optimization, Reinforcement Learning, Deep Wirelength Minimization, 
FPGA. 
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traditional reinforcement learning methodologies. By 
seamlessly integrating DNN into the framework, DRL 
enables agents to learn directly from raw sensory 
input, such as images or auditory signals. This 
advancement discards the need for manual feature 
engineering, as the neural network autonomously 
learns to extract pertinent information from the data. 
The convergence of reinforcement learning and deep 
learning within DRL yields impressive outcomes.  
 
Agents are proficient in handling high-dimensional 
input spaces, allowing them to excel in tasks like 
image recognition and robotics. Nevertheless, it's 
important to acknowledge that DRL also presents 
challenges, including training instability and sample 
inefficiency, which demand thoughtful consideration 
and specialized techniques for resolution. In 
summation, deep reinforcement learning capitalizes 
on the strengths of RL and deep learning, 
empowering AI agents to acquire complex behaviors 
from raw data. This approach holds immense 
promise across a diverse array of applications, paving 
the way for substantial advancements in AI research 
and practical problem-solving.  
          
This paper is organized as follows. Section-II presents 
the prior work on implementation of Machine 
learning algorithm in VLSI placement. Section-III 
presents the problem description, Section-IV 
presents the proposed methodology, Section-V 
presents results analysis and section-V concludes the 
proposed technique. 
 

LITERATURE REVIEW 

An immense amount of research has been done 
regarding the implementation of ML algorithms in 
the VLSI placement. This review takes into account 
various ML models, Reinforcement learning 
techniques, deep RL techniques and algorithms 
implemented to boost the performance of placement 
tools, optimize, and effortlessly automate the 
placement process in the PD flow. According to Z. 
Wang et al. [1] reward and state transition functions 
of dynamic settings may change based on time, which 
is why this work addresses the incremental RL 
problem in continuous spaces for these 
environments. The aim was to switch from the 
initially learned policy in the original environment to 
a new one whenever the environment changes. With 
the incremental learning process, authors present a 
two-step strategy to increase adaptability: policy 
relaxation and importance weighting.  
 
A proper exploration of the new environment is the 
first goal of the policy relaxation mechanism, which 
achieves this by lowering the behavior expectations 
for a few learning episodes to a consistent level. This 
results in a better long-term adaptation by reducing 

the conflict between the new knowledge and the 
previously held beliefs they're adapted to. The second 
step is the implementation of an important weighting 
technique based on finding that episodes with greater 
returns are more agreeing with the new environment 
and therefore contain more novel information. In 
order to encourage the prior optimal policy to be 
quickly replaced by a new one that works in the new 
environment, they provide larger weights during 
parameter update to episodes that contain more new 
information. Traditional navigation challenges and 
intricate locomotion tasks with various 
configurations were the subjects of experiments. The 
outcomes demonstrated that the suggested approach 
could manage a variety of dynamic situations and 
deliver a substantially faster learning process.  
           
 A. Agnesina et al. [2] the physical design flow 
depends on the placement's quality. A human 
engineer often devotes a significant amount of time to 
fine-tuning the various settings of commercial places 
to meet PPA goals. To enhance placement settings of 
commercial EDA tools, this study suggests a deep 
reinforcement learning (RL) architecture. 
Researchers create an autonomous agent that is 
taught exclusively by RL via self-search and learns to 
tune parameters optimally without the assistance of 
humans or domain expertise. Researchers combine 
manually created characteristics from graph 
topology theory with graph embeddings produced by 
unsupervised Graph Neural Networks to generalize 
to unseen netlists. The sparsity of the data and the 
latency of placement runs are overcome by their RL 
algorithms. When compared to a human engineer and 
a state-of-the-art tool auto-tuner, their trained RL 
agent improves wirelength on unseen netlists by up 
to 11% and 2.5%, respectively, in just one placement 
iteration (20X and 50Xless iteration).   
            
A. Mansoor et al. [3] have implemented a unique 
placement method (RS3DPlace) based on simulated 
Annealing (SA) and Reinforcement Learning (RL), 
which is the earlier machine learning strategy for 
Monolithic 3D ICs (M3D). RS3D Place rapidly 
calculates a draft solution using RL's capacity for 
learning, which SA then uses to produce a better final 
solution. Although the gate-level M3D design style is 
the focus of the present implementation, it may be 
applied to other M3D design styles as well as other 2D 
and 3D physical design optimization issues. We 
evaluated RS3DPlace for 8- 128-bit MUX-based right 
arithmetic shifter circuits and a circuit with non-
regular connections in comparison to Mux-based 
shifters, which are optimized in 2- layered M3D 
technology, to demonstrate the efficiency of the 
technique. Additionally, according to experimental 
findings, the total cost function is on average 16% 
better than it is with Random Initialized SA (Rand 
SA).  
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Mrinal Mathur [4] demonstrates that solving time-
consuming placement-based activities requires 
focusing on complicated, industry-wide problems 
with a big impact. They provide a fresh RL-based 
method for placing the macros quickly and more 
effectively to maximize PPA values. Designers 
demonstrate that they produce placements with 
improved outcomes and outperformed state-of-the-
art baselines. These findings demonstrate that their 
agent reduced wirelength without incurring any 
additional training costs and generalized well when 
compared to EDA technologies.  
        
S. F. Almeida et al. [5] the placement engine may 
generate an impractical routing solution as a result of 
the search for wirelength optimization, necessitating 
the repetition of earlier processes and raising the 
total project cost. Due to its cheap computing cost, 
placement algorithms have historically used pin 
density to determine routability. This has turned out 
to be inefficient at advanced technology nodes, 
nevertheless, because of tighter production 
regulations and complicated standard cell layouts. 
Although routability is a topic that many placement 
strategies aim to solve, the issue is that these models 
rely on certain heuristics or designer expertise. As a 
result, researchers provide a methodology based on 
machine learning for addressing routability during 

the placement stage. The different machine learning 
models used in the placement process is reviewed 
and presented the analysis in [24]. On the basis of 
literature review the objective and problem 
statement is defined in this work. 
 
Problem Statement and Objectives 
This work focuses on the idea of timing driven 
placement (TDP). Since placement plays a very 
important role in the physical design flow it is 
significant for the Physical implementation which 
speeds up design turnaround time in the post CTS and 
Routing. The majority of existing works simply 
concern themselves with creating the standard cells 
from scratch in a blank floor plan. However, 
placement extends beyond it where incremental 
placement being quite important. There is room for 
improvement at this stage because there are less 
earlier works. To reduce the need for manual 
intervention and determine the processor's runtime 
based on the number of standard cells, this research 
focuses on reinforcement learning. Reinforcement 
learning is a branch of machine learning that 
addresses how intelligent agents should make 
decisions within an environment to maximize 
cumulative rewards through a combination of 
exploration and exploitation strategy 

 

METHODOLOGY AND IMPLEMENTATION DETAILS 

Proposed Methodology 
The subsequent placement phase, which legalizes the altered placement, must adhere to two essential criteria. 
Firstly, the placement process should commence from the perturbed placement, including the tentative positions 
for the newly introduced gates. Initiating the placement process from scratch when dealing with the new netlist 
would likely result in a lack of convergence between the netlist transformation and placement procedure. Secondly, 
the modifications made to the perturbed placement should not be overly minimal. Transforming the perturbed 
placement into a legal one with minimal alterations would render the subsequent netlist transformation phase 
ineffective.  
 
To address the first requirement, ECO placement techniques are typically employed. However, it's worth noting that 
ECO placement techniques do not satisfy the second requirement. In the following section, it is explored that a 
placement improvement procedure fulfills both of these criteria. Both theoretical and experimental evidence 
indicates that the linear assignment method, when combined with appropriate net models, can be effectively used 
to determine high quality placements concerning both area and wire length. An important problem in systems and 
time driven is placement optimization, which refers to the problem of mapping the nodes of a graph onto a limited 
set of resources to optimize for an objective. 
 
4.1.2   Block Diagram 
The block diagram consists of two main components: "Deep Reinforcement Learning" and "Error Signal Generator 
for Deep Reinforcement Learning." As shown in Figure 1, deep RL block embodies a system or process integral to 
deep reinforcement learning. Deep reinforcement learning amalgamates reinforcement learning, characterized by 
learning through experimentation, with deep learning, which employs neural networks to manage intricate 
patterns. Error signal generator block seems to generate an error signal, possibly to facilitate learning or 
adjustments in the deep reinforcement learning process. 
RL Environment 
 
Overview 
We have developed a reinforcement learning (RL) agent aimed at autonomously optimizing the parameter 
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Fig .1. Block Diagram of proposed method. 

 
Configurations of a placement tool. The primary goal of this agent is to minimize wirelength. The RL problem we 
address comprises four essential components: 
 
1. States: Our state space encompasses all netlists existing within the environment and the complete spectrum of 

feasible parameter setting combinations (denoted as P) available through the placement tool, such as tools like 
Cadence Innovus or Synopsys ICC2. A singular state, represented as 𝑠, encapsulates a unique netlist and its 
corresponding current parameter configuration.  

2. Actions: The agent has access to a set of actions that it can employ to manipulate the current parameter settings. 
Each action, denoted as 𝑠, brings about changes in a subset of parameters. 

3. State Transition: Given a particular state (𝑠𝑠), and in response to an action, the subsequent state (𝑠𝑠+1) 
emerges. This progression involves the same netlist while incorporating updated parameter values in line with 
the action undertaken.  

4. Reward: The reward mechanism we utilize pertains to the negative of the "Half-Perimeter Wire Length" 
(HPWL) output derived from a commercial Electronic Design Automation (EDA) placement tool. The reward 
value experiences an increment if the undertaken action leads to an enhancement in parameter settings, 
specifically geared toward minimizing wirelength. Our approach entails the construction of an RL agent 
proficient in adjusting parameter settings within a placement tool autonomously. This endeavor is driven by 
the objective of reducing wirelength in netlists. The problem's core components include defining states 
involving netlists and parameters, actions influencing parameter alterations, state transitions based on actions, 
and a reward structure grounded in the reduction of wirelength through improved parameter adjustments. 
Depicted in Figure 2, the realm of reinforcement learning (RL) involves the agent's acquisition of knowledge 
by engaging with its surroundings, unfolding across discrete time steps. At each distinct time step denoted as 
𝑠, the agent. 

 

 
Fig.2. Interaction between the reinforcement learning agent and environment in the suggested approach. 

 
within set A. The selection process aligns with the agent's policy 𝑠, functioning as a mapping mechanism steering 
states towards actions. In return for its action, the agent is provided with a reward signal expressed as 𝑠𝑠, 
concurrently transitioning to the subsequent state, S𝑠+1. This cyclic progression persists until the agent ultimately 
arrives at a terminal state, marking a conclusion. Subsequently, the cycle reinitiates as the agent embarks on a new 
learning journey. In essence, this portrayal delineates the fundamental mechanics of RL comprehending how agents 
engage with environments, make choices based on policies, accrue rewards, and advance through states, ultimately 
shaping their learning process within a cyclic framework. 
 
RL Settings  
Objective: Given a netlist, determine arg min𝑠 ∈P 𝑠𝑠𝑠 (𝑠), where P represents the complete set of parameter 
combinations, and 𝑠𝑠𝑠𝑠 is obtained from the tool's output. Approach: 
(1) Define the environment as a black-box placement tool. 
 (2) Define a state 𝑠 that approximates the current parameter set 𝑠𝑠𝑠𝑠𝑠 ∈ P and includes the target netlist.  
(3) Specify actions for modifying 𝑠𝑠𝑠𝑠𝑠.  
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(4) Establish a reward 𝑠 proportional to the negative of 𝑠𝑠𝑠𝑠, thereby encouraging the agent to minimize 
wirelength.  
(5) Choose a discount factor 𝑠, ensuring that the agent aims to reduce wirelength within the fewest possible steps.  
 
The States 
We define our state by encompassing a set of twelve placement parameters originating from Cadence Innovus, 
essential for executing the current placement task (Table 1). Alongside these parameters, we integrate information 
metrics pertaining to the netlist undergoing placement. This netlist-related information incorporates a blend of 
metadata-based insights (such as cell count, floorplan area, etc.) and graph-based topological attributes (Table 2). 
Additionally, we incorporate unsupervised features extracted via a graph we incorporate unsupervised features 
extracted via a graph neural network.  
 
The inclusion of netlist characteristics holds significance in facilitating knowledge transfer across highly diverse 
netlists, effectively enabling our agent to extrapolate its tuning strategy to previously unseen netlists. This 
adaptability is essential as the optimal policy likely hinges on the intricacies unique to each netlist. In a formal 
representation, our state is constructed through the concatenation of several components. These components 
encompass one-hot encoded categorical parameters (utilizing Booleans or enumerations), integer parameters, as 
well as both integer and floating-point netlist features. This comprehensive state formulation ensures that essential 
attributes from both the placement environment and the netlist information are captured, thereby empowering our 
agent to make informed decisions during the tuning process. 
 

Name Type Grou
ps 

Objective Value 

Clock 
gate 
aware 
 
 
Uniform 
density 

Bool 
 
 
 
Bool 

Globa
l 
 
 
 
Globa
l 

Indicates that 
placement process 
taken into 
consideration the 
presence of clock 
gate cells within 
the design 
Facilitates 
achieving a 
balanced 
distribution of 
cells 

 
2 
 
 
2 

Eco max 
density 
 
Legalizat
ion gap 
Max 
density 

Integ
er 
 
 
Integ
er 
 
Integ
er 

Detai
l 
 
 
Detai
l 
 
Globa
l 

The upper limit for 
permissible 
distance during 
placement 
legalization  
The smallest 
allowable gap 
between instances 
on sites 
Regulates the 
upper limit of 
density within 
local bins. 

 
[0,10
0] 
 
[0,10
0] 
 
[0,10
0] 

Eco 
priority 
 
Activity 
power 
driven 
 
Wire 
length 
opt 

Enu
m 
 
Enu
m 
 
 
Enu
m 
 
 

Detai
l 
 
Detai
l + 
effort 
 
Detai
l + 
Effor
t 

Priority assigned 
to instances for the 
refinement 
placement process 
Degree of exertion 
for the activity 
driven power 
placer 
Enhances 
wirelength 
optimization 

3 
 
3 
 
 
3 
 
 
3 
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Blockag
e 
channel 
 
Timing 
effort 
 
Clock 
power 
driven 
Congesti
on effort 
 

Enu
m 
 
 
Enu
m 
 
 
Enu
m 
 
 
Enu
m 

 
Globa
l 
 
 
Detai
l + 
Effor
t 
 
Detai
l + 
Effor
t 
 
Detai
l + 
Effor
t 

through cell 
swapping 
Generates 
obstructions 
within narrow 
channels between 
macros during 
placement. 
Degree of 
commitment for 
the timing-driven 
placement 
approach. 
Extent of 
engagement for 
the clock power-
driven placement 
strategy. 
The degree of 
dedication to 
alleviate 
congestion. 

2 
 
 
3 
 
 
3 
 

TABLE.1.  TARGETED PLACEMENT PARAMETER. 
 
The actions 
To circumvent an overly complex learning scenario involving 24 distinct actions and one for each placement 
parameter – we opted for a more streamlined approach. Our strategy involves categorizing tuning variables based 
on their nature (Boolean, Enumerate, Numeric) and their relevance to placement ("Global," "Detailed," "Effort") 
towards the upper limit. Similarly, for enumerates, actions like "down" represent transitioning from a higher level 
to a medium one. In addition, we introduced an action that preserves the current parameter settings without 
modification. This action acts as a trigger, enabling environment reset in situations where it's selected 
consecutively. This strategy yields a concise set of eleven diverse actions, as detailed in Table 3. Our aim in 
constructing the action space was to strike a balance between simplicity to facilitate neural network training and 
sufficient expressiveness to encompass the full range of parameter adjustments achievable through these 
transformations. 
 
 

TOPOLOGICAL(10) METADATA(10) 

Name Type Name Type 

Average 
degree 

float #cells integer 

Average 
fanout 

float #net integer 

Largest SCC integer #cell pins integer 

Max. clique integer #IO integer 

Chromatic nb integer #nets w.fanout 
€[5,10] 

integer 

Max logie level integer #nets w.fanout>=10 integer 

RCC float #FFs integer 

CC float Total cell area (um²) integer 

Fiedler value float #hardmacro integer 

Spectral 
radius 

float Macro area (um²) integer 
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TABLE.2. HANDCRAFTED NETLIST FEATURE . 
 

 
Table.3. ACTIONS. 

 
The Reward Structure  
To ensure effective learning across a range of netlists exhibiting diverse wirelengths, adopting a reward directly 
linearly linked to Half-Perimeter Wire Length (HPWL) proves challenging. To enhance convergence in our 
approach, we opt for a normalized reward function. This function serves to equalize the magnitudes of value 
approximations across different netlists. The normalized reward function takes the form:  
 

𝑹𝒕 =  
𝑯𝑷𝑾𝑳 𝑯𝒖𝒎𝒂𝒏 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 − 𝑯𝑷𝑾𝑳𝒕

𝑯𝑷𝑾𝑳 𝑯𝒖𝒎𝒂𝒏 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆
 

 
It's important to note that while formulating rewards in this manner relies on knowledge of 𝑠𝑠𝑠𝑠 Human Baseline, 
representing the anticipated baseline wirelength for a design, obtaining this baseline merely necessitates a single 
placement conducted by an engineer. 
 
f) Reinforcement Learning Placement Agent Leveraging the environment description elucidated in the preceding 
section, our approach revolves around training an agent to independently fine-tune the parameters of the 
placement tool. The following outlines our methodology:  
• Within a specific state, the agent discerns the optimal action by relying on the probability outputs of its policy 
network.  
• To ensure effective training of the policy network, we embrace an actor-critic framework, unifying the benefits of 
both value-based and policy-based optimization algorithms. 
 • To tackle the well-documented challenges of latency and sparsity encountered in the application of Reinforcement 
Learning (RL) to Electronic Design Automation (EDA), we introduce multiple simultaneous environments, allowing 
for the accumulation of diverse experiences. To facilitate the learning of a recursive optimization process 
characterized by intricate interdependencies, our agent's architectural design incorporates a deep neural network 
equipped with a recurrent layer and an attention mechanism.  
 
This tailored architecture effectively addresses the intricacies of EDA optimization. The architecture proposed in 
[2] is modified by using ReLu activation function instead of tanh function and also by introducing the more dense 
layer to achieve the higher accuracy. 
 
Learning of Actor – critic framework 
In our chosen architectural framework, our objective is to develop a policy that optimizes value while 
simultaneously learning and incorporating knowledge from the environment into other predictions. This 
framework, known as the actor-critic approach, is illustrated in Figure.3. Within this context, the term "actor" refers 
to the policy's role in action selection, while the estimated value function is designated as the "critic" since it 
evaluates and provides assessments of the actions executed by the actor. Actor-critic algorithms integrate elements 
from both value-based and policy-based methods, providing a comprehensive approach to reinforcement learning. 
This approach is depicted in Figure 3.  
 
A network architecture featuring two distinct components. 
The actor-critic framework seamlessly integrates both policy and value models. The holistic agent network can be 
conceptualized as a deep neural network. In this arrangement, the policy component directs the adjustment of 
placement parameter settings, while the value component evaluates the effectiveness of the current configuration. 
Crucially, the network architecture is designed to facilitate the reciprocal flow of information between value and 
policy predictions, characterized by the integration of a Long Short Term Memory (LSTM) and an Attention 
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mechanism, facilitates the acquisition of knowledge pertaining to intricate recurrent optimization processes. 
Specifics regarding the sub-networks employed in this architecture are outlined in Table. 4 for reference. Our 
algorithm identifies the location of placement using LSTM model for forecasting algorithm for TDP. The wire length 
varies it varies the negative slacks. 
 
The comprehensive design of our deep neural network is visually depicted in Figure.4. To compute both value and 
policy, we initially pass the combination of placement parameters and graph-extracted features through two 
feedforward fully-connected (FC) layers featuring ReLu activations because with our study we identified ReLU is 
often better suited than tanh for time-driven placement problems due to its faster learning, avoidance of vanishing 
gradients, efficiency, and ability to handle deep networks, which may need to handle both temporal and spatial data 
for the placement of components based on time constraints, These properties make ReLU a more effective activation 
function where large amounts of data must be processed quickly and accurately. So the network for agent proposed 
in fig.4 uses ReLU network. This is followed by another FC linear layer. 
 

 
 

 
Fig.4. The comprehensive network structure of agent. 

 
Subsequently, we introduce a Long ShortTerm Memory (LSTM) module equipped with layer normalization and 
have included sequential layer, convolution, activation max pooling layer dropout and flatten layer, housing 16 
hidden standard units with forget gate functionality. Notably, the feed-forward FC layers do not possess any 
memory components. The incorporation of an LSTM, a recurrent layer, enables the model to make decisions based 
on prior states, aligning with traditional optimization methodologies rooted in recurrent approaches. Subsequently, 
this hidden state serves as input for the two branches of the network, each consisting of two fully-connected (FC) 
layers. One branch concludes with an output softmax layer for policy, while the other ends with an output linear 
layer for value estimation. Details regarding the network's parameters are provided in Table 4 for reference 
 

RESULT 

For the training and testing of our agent, we have chosen a set of 15 benchmark designs sourced from OpenCores, 
the ISPD 2012 contest, and two RISC-V single cores, as outlined in Table 4. The initial eleven designs are utilized for 
training purposes, while the remaining four serve as the test dataset. 
  

Table.5. Benchmark statistics. 
Part Inpu

t 
Hidden Output 
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1.Shared body 
2.LSTM(6 
unroll) 
3.Attention  
4.policy 
5.value 

79 
16 
16x6 
16 
16 

(64,32) 
(relu) 
16 
Wa, Wc 
(32,32) 
(relu) 
(32,16 
)(relu) 

16(linear) 
16x6 
16 
11(softma
x) 
1(linear) 

 
Table. 4 is the Benchmark Characteristics Derived from a Commercial 28nm Technology. Here, LL signifies the 
maximum logic level, RCC represents the Rich Club Coefficient (in units of  −4), and Sp. R. denotes the Spectral 
Radius. RT corresponds to the mean placement runtime employing Innovus, measured in minutes.  
 
Training Result There are a total of 6 images used out of which 3 images used for training and another 3 for testing. 
To facilitate placement parameter optimization, we opt for the use of 3 filters, as per our preference. Each of these 
filters comprises 81 neurons, forming a 9x9 grid of neurons. Each neuron in this grid is connected to 9 other 
neurons, corresponding to the 3x3 receptive field, and considering there are 3 filters, the total number of neurons 
in this configuration amounts to 243. In our deep neural network (DNN), we incorporate a total of 13 layers. For the 
processing of each image, it is divided into a 3x3 grid. Convolution operations are performed on each grid, and we 
utilize max-pooling layers to down sample the data, enabling us to comprehend the depth of each image effec tively. 
(i) Number of iteration = 5         
 

 
 

 
Fig.5 For 5 iterations (a) model reward and (b) RL model loss (c) Receiver operating . 

 
Characteristic. The confusion matrix reveals specific values: TP (True Positives) equal to 6, TN (True Negatives) 
equal to 0, FP (False Positives) equal to 3, and FN (False Negatives) equal to 3. This arises from a dataset comprising 
6 images. However, the noteworthy observation is that the accuracy of the model stands at 75%. From Figure 5 (a), 
it is evident that as the total number of iterations increases, there is a corresponding increase in the reward for both 
training and testing. However, in Figure 5.1(b), a different trend is observed. As the number of iterations increases, 
the error decreases. This suggests that with more iterations, the model's performance improves, leading to higher 
rewards during training and reduced errors during testing. The Receiver Operating Characteristic (ROC) curve is a 
valuable tool for assessing the performance of classification models, especially in scenarios where class distribution 
is imbalanced or when the cost of false positives and false negatives varies. It helps in choosing an appropriate 
threshold for making decisions based on the model's predictions, balancing the trade-off between sensitivity and 
specificity. The ROC curve is generated and studied in our method to understand how well the images are learnt 
based on no of iterations. In the fig 5 (c) TPR at 0.5 and "bending," you are likely referring to the true positive rate 
at a specific threshold of 0.5 and observing that the ROC curve may be bending away from the diagonal, indicating 
improved classification performance at that threshold. This is a desirable characteristic, as it implies that the model 
is making better trade-offs between true positives and false positives. (ii) Number of iteration=100 From Figure 
6(a), it is evident that as the total number of iterations increases, there is a corresponding increase in the reward 
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for both training and testing. However, in Figure 6(b), a different trend is observed. As the number of iterations 
increases, the error decreases. This suggests that with more iterations, the model's performance improves, leading 
to higher rewards during training and reduced errors during testing. In this specific scenario, during 100 iterations 
of the model's performance evaluation, the confusion matrix yields the following results: - True Positives (TP) = 6 
,- True Negatives (TN) = 0 ,- False Positives (FP) = 0 ,- False Negatives (FN) = 6 These values are derived from a 
dataset containing a total of 6 images. Remarkably, the accuracy achieved in this case is 100%. This remarkable 
accuracy indicates that, with the benefit of 100 iterations, the model has successfully learned and accurately 
classified all of the images in the dataset. In Fig.6(c) is observing a TPR of 1 (meaning perfect sensitivity) at a 
threshold of 1, this suggests that all positive instances are correctly classified as positive, and there are no false 
negatives. However, this is unusual in practice because it implies that the model is 
 

 
Fig.6 For 100 iterations (a) model reward and (b) RL model loss (c) ROC curve. 

 
Extremely confident in its predictions. The concept of "bending" in the ROC curve is more commonly associated  
with changes in sensitivity and specificity as the threshold varies in a typical range between 0 and 1. 
 
This table.6 presents a comparison of HPWL results after placement on training netlists, involving human-designed 
placement, the Multi-Armed Bandit (MAB) method [23], the existing RL model and our RL-based approach. HPWL 
values are expressed in meters (𝑠). The Δ column signifies the percentage of negative improvement compared to 
the human-designed placement. Table.6 presents the most optimal wavelengths achieved by the Multi-Armed 
Bandit (MAB) approach, the existing RL model and our RL agent during the training process. The human baseline 
reference is established through the efforts of a skilled engineer who dedicated a day to parameter tuning. It's 
noteworthy that our RL agent exhibits superior performance compared to MAB and the existing RL model on the 
majority of netlists, achieving a remarkable 8.7% reduction in HPWL on the AVC-Nova Core benchmark. In 
summary, all the methods demonstrate substantial improvements over the human baseline. 
 
Table.6. Comparative Analysis of Half-Perimeter Bounding Box (HPWL) Following Placement on Training 

Netlist 
Netli
st 

Huma
n 

MAB 
[23]  
(∆ %) 

RL 
 ( ∆ %) 

Our RL 
Algorithm 

PCI 0.01 0.0092 
 (-8.0%) 

0.0092 
(-8.0%) 

0.00903 
(-7.1%) 

DMA 0.149 0.139 
 (-6.7%) 

0.135 
(-9.4%) 

0.12000000000
000001     (-
9.3%) 

819 0.3 0.28 
 (-6.7%) 

0.28 
(-6.7%) 

0.25 
( 6.8%) 

DES 0.42 0.37  
(-11.9%) 

0.36 
(-
14.3%) 

0.35 
( 14.6%) 

VGA 1.52 1.40  
(-7.9%) 

1.41  
(-7.2%) 

1.7 
(-7.7%) 

ECG 0.72 0.65  
(-9.7%) 

0.68 
 (-
5.5%) 

0.65999999999
99999       (-5.5%) 
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Rock
et 

1.33 1.27 
 (-4.5%) 

1.20 
( -9.8%) 

1.9 
( -9.8%) 

AES 1.49 1.44  
(-2.7%) 

1.40 
(-6.0%) 

1.8 
(-6.9%) 

AVC- 
nova 

1.59 1.49 
 (-6.3%) 

1.46  
(-8.2%) 

1.5 
(-8.7%) 

Tate 1.53 1.42 
 (-7.2%) 

1.45 
(-5.2%) 

1.5 
( -5.8%) 

 
Testing Result 
 To assess the generalization capability of our agent, we evaluate its performance on four previously unseen test 
netlists. This evaluation is conducted without any further training, meaning that the network parameters remain 
fixed. The RL agent iteratively enhances an initially random parameter set by selecting the action (denoted as 𝑠) 
with the highest predicted probability. Since our actions are deterministic, we can determine the resulting 
parameter set, which is then provided as feedback to the network. This process is repeated until the estimated value 
decreases for three consecutive updates. At this point, we backtrack to the parameter settings that yielded the 
highest value.  
 

 
 
Circuit 

Metric 
huma
n 

MAB RL Our RL 

LDPC 

WL(m) 1.65 1.57 1.53 1.0 

WNS(ns) -0.005 
-
0.001 

-
0.00
1 

-0.002 

Power(m
w) 

162.1
0 

156.4
9 

154.
77 

150.63 

OpenP
t 

WL(m) 6.31 6.24 6.20 6.1 

WNS(ns) -0.003 
-
0.001 

0.0 0.0 

Power(m
w) 

192.0
8 

190.9
5 

189.
72 

161.1 

Netcar
d 

WL(m) 8.01 7.44 7.15 6.3 

WNS(ns) -0.006 
-
0.007 

-
0.00
4 

0.0 

Power(m
w) 

174.0
5 

170.5
1 

167.
70 

153.5 

Leon3 

WL(m) 5.66 5.53 5.41 5.0 

WNS(ns) -0.005 
-
0.001 

-
0.00
3 

-0.001 

Power(m
w) 

156.8
3 

156.0
0 

155.
51 

153.2 

 
This methodology allows us to identify a "good" candidate parameter set without actually performing any 
placement. Subsequently, we execute a single placement using this parameter set and record the resulting 
wirelength. In contrast, the Multi-Armed Bandit (MAB) approach relies on the reward signal to suggest new 
parameter sets, necessitating the execution of actual placements by the tool. We monitor the best wirelength 
obtained and allocate 50 sequential iterations for the MAB's optimization process. Table.7 displays the optimal 
wirelength results obtained by our RL agent , RL and the MAB across all four test netlists. It's evident that our RL 
agent consistently outperforms the MAB in terms of wirelength optimization, and notably, it achieves this superior 
performance with just a single placement. To validate that the improvement in Half-Perimeter Wire Length (HPWL) 
achieved during placement translates into a corresponding reduction in the final routed wirelength, we conducted 
routing for the placed designs. The layouts of the OpenPiton Core designs are visually depicted in Figure 8. It 
ensured that routing was completed without encountering congestion issues or Design Rule Check (DRC) violations. 
The Power, Performance, and Area (PPA) metrics for the routed designs are summarized in Table 8. Our 
observations indicate that the reduction in HPWL achieved during placement is consistently preserved after routing 
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for all test designs. This translates to significant wirelength savings, with LDPC and Net Card designs achieving 
reductions of 7.3% and 11% compared to the human baseline. 
 

Netlist 
Huma
n 

Numb
er of 
iterati
on 

MAB[23]in 
m 
(%negative 
improveme
nt) 

Numbe
r of  
iteratio
n 

RL[2] in m 
(%  
negative 
improvem
ent) 

Numb
er of  
iterati
on 

Proposed RL 
in m (% 
negative 
improvement
) 

Numb
er of  
iterati
on 

LDPC 1.14 20 1.04 
(-8.8%) 

50 1.03 
(-9.77%) 

1 1.02 
(-10.73%) 

1 

Openpt 5.26 20 5.11 
(-2.9%) 

50 5.9 
(-3.87%) 

1 5.4 
(-4.87%) 

1 

Netcard 4.88 20 4.45 
(-8.8%) 

50 4.34 
(-11.1%) 

1 4.1 
(-13.4%) 

1 

Leon3 3.52 20 3.37 
(-4.3%) 

50 3.29 
(-6.5%) 
 

1 3.2 
(-8.7%) 

1 

TABLE 8. Comparison of PPA (Power, Performance, Area) after Routing on test set 
 

 
(a) Human design (runtime 7hrs)                                                            (b) Multi-armed bandit ( runtime 16hrs) 

(c) RL (runtime 20min)                                                                                      d) Proposed RL ( runtime 16.6min ) 
 

 
Fig. 7. GDSII layout of Openpiton. 

 

CONCLUSION 

Deep RL is a promising approach for solving combinatorial problems, and enables domain adaptation and direct 
optimization of non-differentiable objective functions. Training RL policies is a very challenging task, in part due to 
the brittleness of gradient updates and the costliness of evaluating rewards. In this work, we provide an overview 
of problem, and discuss strategies for training successful RL agents. our RL agent exhibits superior performance 
compared to MAB and the existing RL model on the majority of netlists, achieving a remarkable 8.7% reduction in 
HPWL on the AVC-Nova Core benchmark and the reduction in HPWL achieved during placement is consistently 
preserved after routing for all test designs. This translates to significant wirelength savings, with LDPC and Net Card 
designs achieving reductions of 7.3% and 11% compared to the human baseline.We predict a trend towards more 
effective RL-based domain adaptation techniques, in which graph neural networks will play a key role in enabling 
both higher sample efficiency and more optimal placements. We also foresee a future in which easy to use RL-based 
placement tools will enable non-ML experts to harness and improve upon this powerful technique. 
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