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space encapsulating netlist features and placement parameters, a streamlined action set for parameter
adjustments, and a normalized reward function based on Half-Perimeter Wire Length (HPWL). The
model utilizes Long Short-Term Memory (LSTM) and attention mechanisms to handle complex
dependencies and recurrent optimization processes. Experimental results on benchmark designs
demonstrate significant improvements, with our DRL agent achieving up to an 8.7% reduction in HPWL
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INTRODUCTION characteristics. This may aid in bridging the gap
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The remarkable growth of the electronics industry in etween spectication and culp procuction. by

. . ) defining a problem and an algorithm for the same
both complexity and annual device production can be . .
. . : : problem, designers should possess the capability to
attributed to various advancements in the field of

develop a computer program that automates physical
VLSI. The evolution of the chip design industry has ¢op P pros Phys
. , design. DRL is a sophisticated framework that unites
spurred substantial progress in areas such as : :
o two potent concepts: reinforcement learning and
telecommunications, control systems, consumer . . . . ;
. . : o deep learning. This fusion equips Al agents with the
electronics, high-performance computing, missile

o X capability to comprehend and navigate complex

technology, and more. These applications experience . . . . ,

. S environments, rendering it highly effective for
processing speeds and application access that are tackling intricate real-world problems
unheard of, and VLSI makes this all feasible. As long )
as there are inventions and a very fast rate of growth
in the VLSI sector to support those inventions, there
will always be a market for these products. Because
of the substantial number of cells and the precision
needed for their placement in Very Large-Scale
Integration (VLSI) chips, the idea of traditional design
that is done manually is rendered obsolete. Any
designer would find it extremely difficult to complete
a project of this size without the aid of technology.

In the realm of reinforcement learning, agents
acquire decision making abilities by engaging with an
environment. They take actions, observe the
consequences, and refine their strategies based on
the received rewards or penalties. This iterative
process of learning through experimentation
ultimately leads to the optimization of the agent's
behavior. Conversely, deep learning harnesses neural
networks to handle intricate patterns and
representations within data. These networks are
structured into multiple layers, each progressively
refining features extracted from the input data. This
hierarchical architecture empowers deep learning
models to capture and understand intricate
relationships inherent in the data. Within the domain
of DRL, deep learning is employed to enhance

Electronic Design Automation (EDA) tools were
introduced as a result, assisting designers in
increasing design and verification efficiency. The
development of several tools for each level of VLSI is
the main goal of EDA. However, having EDA tools
alone is insufficient for design because it necessitates
a fundamental understanding of VLSI and its
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traditional reinforcement learning methodologies. By
seamlessly integrating DNN into the framework, DRL
enables agents to learn directly from raw sensory
input, such as images or auditory signals. This
advancement discards the need for manual feature
engineering, as the neural network autonomously
learns to extract pertinent information from the data.
The convergence of reinforcement learning and deep
learning within DRL yields impressive outcomes.

Agents are proficient in handling high-dimensional
input spaces, allowing them to excel in tasks like
image recognition and robotics. Nevertheless, it's
important to acknowledge that DRL also presents
challenges, including training instability and sample
inefficiency, which demand thoughtful consideration
and specialized techniques for resolution. In
summation, deep reinforcement learning capitalizes
on the strengths of RL and deep learning,
empowering Al agents to acquire complex behaviors
from raw data. This approach holds immense
promise across a diverse array of applications, paving
the way for substantial advancements in Al research
and practical problem-solving.

This paper is organized as follows. Section-II presents
the prior work on implementation of Machine
learning algorithm in VLSI placement. Section-III
presents the problem description, Section-IV
presents the proposed methodology, Section-V
presents results analysis and section-V concludes the
proposed technique.

LITERATURE REVIEW

An immense amount of research has been done
regarding the implementation of ML algorithms in
the VLSI placement. This review takes into account
various ML models, Reinforcement learning
techniques, deep RL techniques and algorithms
implemented to boost the performance of placement
tools, optimize, and effortlessly automate the
placement process in the PD flow. According to Z.
Wang et al. [1] reward and state transition functions
of dynamic settings may change based on time, which
is why this work addresses the incremental RL
problem in continuous spaces for these
environments. The aim was to switch from the
initially learned policy in the original environment to
a new one whenever the environment changes. With
the incremental learning process, authors present a
two-step strategy to increase adaptability: policy
relaxation and importance weighting.

A proper exploration of the new environment is the
first goal of the policy relaxation mechanism, which
achieves this by lowering the behavior expectations
for a few learning episodes to a consistent level. This
results in a better long-term adaptation by reducing

the conflict between the new knowledge and the
previously held beliefs they're adapted to. The second
step is the implementation of an important weighting
technique based on finding that episodes with greater
returns are more agreeing with the new environment
and therefore contain more novel information. In
order to encourage the prior optimal policy to be
quickly replaced by a new one that works in the new
environment, they provide larger weights during
parameter update to episodes that contain more new
information. Traditional navigation challenges and
intricate  locomotion  tasks  with  various
configurations were the subjects of experiments. The
outcomes demonstrated that the suggested approach
could manage a variety of dynamic situations and
deliver a substantially faster learning process.

A. Agnesina et al. [2] the physical design flow
depends on the placement's quality. A human
engineer often devotes a significant amount of time to
fine-tuning the various settings of commercial places
to meet PPA goals. To enhance placement settings of
commercial EDA tools, this study suggests a deep
reinforcement learning (RL) architecture.
Researchers create an autonomous agent that is
taught exclusively by RL via self-search and learns to
tune parameters optimally without the assistance of
humans or domain expertise. Researchers combine
manually created characteristics from graph
topology theory with graph embeddings produced by
unsupervised Graph Neural Networks to generalize
to unseen netlists. The sparsity of the data and the
latency of placement runs are overcome by their RL
algorithms. When compared to a human engineer and
a state-of-the-art tool auto-tuner, their trained RL
agent improves wirelength on unseen netlists by up
to 11% and 2.5%, respectively, in just one placement
iteration (20X and 50Xless iteration).

A. Mansoor et al. [3] have implemented a unique
placement method (RS3DPlace) based on simulated
Annealing (SA) and Reinforcement Learning (RL),
which is the earlier machine learning strategy for
Monolithic 3D ICs (M3D). RS3D Place rapidly
calculates a draft solution using RL's capacity for
learning, which SA then uses to produce a better final
solution. Although the gate-level M3D design style is
the focus of the present implementation, it may be
applied to other M3D design styles as well as other 2D
and 3D physical design optimization issues. We
evaluated RS3DPlace for 8- 128-bit MUX-based right
arithmetic shifter circuits and a circuit with non-
regular connections in comparison to Mux-based
shifters, which are optimized in 2- layered M3D
technology, to demonstrate the efficiency of the
technique. Additionally, according to experimental
findings, the total cost function is on average 16%
better than it is with Random Initialized SA (Rand
SA).
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Mrinal Mathur [4] demonstrates that solving time-
consuming placement-based activities requires
focusing on complicated, industry-wide problems
with a big impact. They provide a fresh RL-based
method for placing the macros quickly and more
effectively to maximize PPA values. Designers
demonstrate that they produce placements with
improved outcomes and outperformed state-of-the-
art baselines. These findings demonstrate that their
agent reduced wirelength without incurring any
additional training costs and generalized well when
compared to EDA technologies.

S. F. Almeida et al. [5] the placement engine may
generate an impractical routing solution as a result of
the search for wirelength optimization, necessitating
the repetition of earlier processes and raising the
total project cost. Due to its cheap computing cost,
placement algorithms have historically used pin
density to determine routability. This has turned out
to be inefficient at advanced technology nodes,
nevertheless, because of tighter production
regulations and complicated standard cell layouts.
Although routability is a topic that many placement
strategies aim to solve, the issue is that these models
rely on certain heuristics or designer expertise. As a
result, researchers provide a methodology based on
machine learning for addressing routability during

the placement stage. The different machine learning
models used in the placement process is reviewed
and presented the analysis in [24]. On the basis of
literature review the objective and problem
statement is defined in this work.

Problem Statement and Objectives

This work focuses on the idea of timing driven
placement (TDP). Since placement plays a very
important role in the physical design flow it is
significant for the Physical implementation which
speeds up design turnaround time in the post CTS and
Routing. The majority of existing works simply
concern themselves with creating the standard cells
from scratch in a blank floor plan. However,
placement extends beyond it where incremental
placement being quite important. There is room for
improvement at this stage because there are less
earlier works. To reduce the need for manual
intervention and determine the processor's runtime
based on the number of standard cells, this research
focuses on reinforcement learning. Reinforcement
learning is a branch of machine learning that
addresses how intelligent agents should make
decisions within an environment to maximize
cumulative rewards through a combination of
exploration and exploitation strategy

« OF RARE

METHODOLOGY AND IMPLEMENTATION DETAILS

Proposed Methodology

The subsequent placement phase, which legalizes the altered placement, must adhere to two essential criteria.
Firstly, the placement process should commence from the perturbed placement, including the tentative positions
for the newly introduced gates. Initiating the placement process from scratch when dealing with the new netlist
would likely result in a lack of convergence between the netlist transformation and placement procedure. Secondly,
the modifications made to the perturbed placement should not be overly minimal. Transforming the perturbed
placement into a legal one with minimal alterations would render the subsequent netlist transformation phase
ineffective.

To address the first requirement, ECO placement techniques are typically employed. However, it's worth noting that
ECO placement techniques do not satisfy the second requirement. In the following section, it is explored that a
placement improvement procedure fulfills both of these criteria. Both theoretical and experimental evidence
indicates that the linear assignment method, when combined with appropriate net models, can be effectively used
to determine high quality placements concerning both area and wire length. An important problem in systems and
time driven is placement optimization, which refers to the problem of mapping the nodes of a graph onto a limited
set of resources to optimize for an objective.

4.1.2 Block Diagram

The block diagram consists of two main components: "Deep Reinforcement Learning" and "Error Signal Generator
for Deep Reinforcement Learning." As shown in Figure 1, deep RL block embodies a system or process integral to
deep reinforcement learning. Deep reinforcement learning amalgamates reinforcement learning, characterized by
learning through experimentation, with deep learning, which employs neural networks to manage intricate
patterns. Error signal generator block seems to generate an error signal, possibly to facilitate learning or
adjustments in the deep reinforcement learning process.

RL Environment

Overview
We have developed a reinforcement learning (RL) agent aimed at autonomously optimizing the parameter
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Fig .1. Block Diagram of proposed method.

Configurations of a placement tool. The primary goal of this agent is to minimize wirelength. The RL problem we
address comprises four essential components:

1.

States: Our state space encompasses all netlists existing within the environment and the complete spectrum of
feasible parameter setting combinations (denoted as P) available through the placement tool, such as tools like
Cadence Innovus or Synopsys ICC2. A singular state, represented as @, encapsulates a unique netlist and its
corresponding current parameter configuration.

Actions: The agent has access to a set of actions that it can employ to manipulate the current parameter settings.
Each action, denoted as @, brings about changes in a subset of parameters.

State Transition: Given a particular state (E@), and in response to an action, the subsequent state (2@+1)
emerges. This progression involves the same netlist while incorporating updated parameter values in line with
the action undertaken.

Reward: The reward mechanism we utilize pertains to the negative of the "Half-Perimeter Wire Length"
(HPWL) output derived from a commercial Electronic Design Automation (EDA) placement tool. The reward
value experiences an increment if the undertaken action leads to an enhancement in parameter settings,
specifically geared toward minimizing wirelength. Our approach entails the construction of an RL agent
proficient in adjusting parameter settings within a placement tool autonomously. This endeavor is driven by
the objective of reducing wirelength in netlists. The problem's core components include defining states
involving netlists and parameters, actions influencing parameter alterations, state transitions based on actions,
and a reward structure grounded in the reduction of wirelength through improved parameter adjustments.
Depicted in Figure 2, the realm of reinforcement learning (RL) involves the agent's acquisition of knowledge
by engaging with its surroundings, unfolding across discrete time steps. At each distinct time step denoted as
@, the agent.

Naﬂﬁt Paramater Set

Reward Placement engine
| |<7 gin
Agent REHPWL | environment
Netlist | New Parameter Set I

New state St+1

Updated Current state

Fig.2. Interaction between the reinforcement learning agent and environment in the suggested approach.

within set A. The selection process aligns with the agent's policy @, functioning as a mapping mechanism steering
states towards actions. In return for its action, the agent is provided with a reward signal expressed as B,
concurrently transitioning to the subsequent state, SE+1. This cyclic progression persists until the agent ultimately
arrives at a terminal state, marking a conclusion. Subsequently, the cycle reinitiates as the agent embarks on a new
learning journey. In essence, this portrayal delineates the fundamental mechanics of RL comprehending how agents
engage with environments, make choices based on policies, accrue rewards, and advance through states, ultimately
shaping their learning process within a cyclic framework.

RL Settings
Objective: Given a netlist, determine arg min@ €P (&), where P represents the complete set of parameter
combinations, and is obtained from the tool's output. Approach:

(1) Define the environment as a black-box placement tool.

(2) Define a state @ that approximates the current parameter set

€ P and includes the target netlist.
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(4) Establish a reward B proportional to the negative of RERE, thereby encouraging the agent to minimize
wirelength.
(5) Choose a discount factor B, ensuring that the agent aims to reduce wirelength within the fewest possible steps.

The States

We define our state by encompassing a set of twelve placement parameters originating from Cadence Innovus,
essential for executing the current placement task (Table 1). Alongside these parameters, we integrate information
metrics pertaining to the netlist undergoing placement. This netlist-related information incorporates a blend of
metadata-based insights (such as cell count, floorplan area, etc.) and graph-based topological attributes (Table 2).
Additionally, we incorporate unsupervised features extracted via a graph we incorporate unsupervised features
extracted via a graph neural network.

The inclusion of netlist characteristics holds significance in facilitating knowledge transfer across highly diverse
netlists, effectively enabling our agent to extrapolate its tuning strategy to previously unseen netlists. This
adaptability is essential as the optimal policy likely hinges on the intricacies unique to each netlist. In a formal
representation, our state is constructed through the concatenation of several components. These components
encompass one-hot encoded categorical parameters (utilizing Booleans or enumerations), integer parameters, as
well as both integer and floating-point netlist features. This comprehensive state formulation ensures that essential
attributes from both the placement environment and the netlist information are captured, thereby empowering our
agent to make informed decisions during the tuning process.

Name Type | Grou | Objective Value
ps
Clock Bool | Globa | Indicates that
gate 1 placement process | 2
aware taken into
consideration the
Bool presence of clock | 2
Uniform Globa | gate cells within
density 1 the design
Facilitates
achieving a
balanced
distribution of
cells
Eco max | Integ | Detai | The upper limit for
density | er 1 permissible [0,10
distance  during | 0]
Legalizat placement
ion gap Integ | Detai | legalization [0,10
Max er 1 The smallest | 0]
density allowable gap
Integ | Globa | between instances | [0,10
er 1 on sites 0]
Regulates the
upper limit of
density within
local bins.
Eco Enu Detai | Priority assigned | 3
priority | m 1 to instances for the
refinement 3
Activity | Enu Detai | placement process
power m 1+ | Degree of exertion
driven effort | for the activity | 3
driven power
Wire Enu Detai | placer
length m 1  + | Enhances 3
opt Effor | wirelength
t optimization
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Blockag | Enu through cell | 2

e m Globa | swapping

channel 1 Generates
obstructions 3

Timing Enu within narrow

effort m Detai | channels between

1 + | macros during | 3

Clock Effor | placement.
power Enu |t Degree of
driven m commitment for
Congesti Detai | the timing-driven
on effort 1 + | placement
Enu Effor | approach.
m t Extent of
engagement  for

Detai | the clock power-

1 + | driven placement

Effor | strategy.

t The degree of
dedication to
alleviate
congestion.

TABLE.1. TARGETED PLACEMENT PARAMETER.

The actions

To circumvent an overly complex learning scenario involving 24 distinct actions and one for each placement
parameter - we opted for a more streamlined approach. Our strategy involves categorizing tuning variables based
on their nature (Boolean, Enumerate, Numeric) and their relevance to placement ("Global," "Detailed,” "Effort")
towards the upper limit. Similarly, for enumerates, actions like "down" represent transitioning from a higher level
to a medium one. In addition, we introduced an action that preserves the current parameter settings without
modification. This action acts as a trigger, enabling environment reset in situations where it's selected
consecutively. This strategy yields a concise set of eleven diverse actions, as detailed in Table 3. Our aim in
constructing the action space was to strike a balance between simplicity to facilitate neural network training and
sufficient expressiveness to encompass the full range of parameter adjustments achievable through these
transformations.

TOPOLOGICAL(10) METADATA(10)

Name Type |[Name Type

Average float  |#cells integer

degree

Average float  |#net integer

fanout

Largest SCC |integer |#cell pins integer

Max. clique |integer [#10 integer

Chromatic nb |integer |#nets w.fanout|integer
€[5,10]

Max logie levellinteger |#nets w.fanout>=10 [integer

RCC float  |#FFs integer

cc float |Total cell area (um?) integer

Fiedler value |[float |#hardmacro integer

Spectral float [Macro area (um?) [integer

radius
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TABLE.2. HANDCRAFTED NETLIST FEATURE.

. Boolean Flipping

. Increment Integers

. Decrement Integers

. Increase Effort Levels
. Decrease Effort Levels
. Raise Detailed Focus

. Lower Detailed Focus

[F R AT SR U

10. Mingle Inversions: Timing, Congestion, and WL Efforts
11. No Action Taken

Table.3. ACTIONS.

The Reward Structure

To ensure effective learning across a range of netlists exhibiting diverse wirelengths, adopting a reward directly
linearly linked to Half-Perimeter Wire Length (HPWL) proves challenging. To enhance convergence in our
approach, we opt for a normalized reward function. This function serves to equalize the magnitudes of value
approximations across different netlists. The normalized reward function takes the form:

_ HPWL Human Baseline — HPWLt
- HPWL Human Baseline

It's important to note that while formulating rewards in this manner relies on knowledge of Human Baseline,
representing the anticipated baseline wirelength for a design, obtaining this baseline merely necessitates a single
placement conducted by an engineer.

f) Reinforcement Learning Placement Agent Leveraging the environment description elucidated in the preceding
section, our approach revolves around training an agent to independently fine-tune the parameters of the
placement tool. The following outlines our methodology:

« Within a specific state, the agent discerns the optimal action by relying on the probability outputs of its policy
network.

« To ensure effective training of the policy network, we embrace an actor-critic framework, unifying the benefits of
both value-based and policy-based optimization algorithms.

« To tackle the well-documented challenges of latency and sparsity encountered in the application of Reinforcement
Learning (RL) to Electronic Design Automation (EDA), we introduce multiple simultaneous environments, allowing
for the accumulation of diverse experiences. To facilitate the learning of a recursive optimization process
characterized by intricate interdependencies, our agent's architectural design incorporates a deep neural network
equipped with a recurrent layer and an attention mechanism.

This tailored architecture effectively addresses the intricacies of EDA optimization. The architecture proposed in
[2] is modified by using ReLu activation function instead of tanh function and also by introducing the more dense
layer to achieve the higher accuracy.

Learning of Actor - critic framework

In our chosen architectural framework, our objective is to develop a policy that optimizes value while
simultaneously learning and incorporating knowledge from the environment into other predictions. This
framework, known as the actor-critic approach, is illustrated in Figure.3. Within this context, the term "actor" refers
to the policy's role in action selection, while the estimated value function is designated as the "critic" since it
evaluates and provides assessments of the actions executed by the actor. Actor-critic algorithms integrate elements
from both value-based and policy-based methods, providing a comprehensive approach to reinforcement learning.
This approach is depicted in Figure 3.

A network architecture featuring two distinct components.

The actor-critic framework seamlessly integrates both policy and value models. The holistic agent network can be
conceptualized as a deep neural network. In this arrangement, the policy component directs the adjustment of
placement parameter settings, while the value component evaluates the effectiveness of the current configuration.
Crucially, the network architecture is designed to facilitate the reciprocal flow of information between value and
policy predictions, characterized by the integration of a Long Short Term Memory (LSTM) and an Attention
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mechanism, facilitates the acquisition of knowledge pertaining to intricate recurrent optimization processes.
Specifics regarding the sub-networks employed in this architecture are outlined in Table. 4 for reference. Our
algorithm identifies the location of placement using LSTM model for forecasting algorithm for TDP. The wire length
varies it varies the negative slacks.

The comprehensive design of our deep neural network is visually depicted in Figure.4. To compute both value and
policy, we initially pass the combination of placement parameters and graph-extracted features through two
feedforward fully-connected (FC) layers featuring ReLu activations because with our study we identified ReLU is
often better suited than tanh for time-driven placement problems due to its faster learning, avoidance of vanishing
gradients, efficiency, and ability to handle deep networks, which may need to handle both temporal and spatial data
for the placement of components based on time constraints, These properties make ReLU a more effective activation
function where large amounts of data must be processed quickly and accurately. So the network for agent proposed
in fig.4 uses ReLU network. This is followed by another FC linear layer.

Current state 5t

Nethst | Parameter Set

]

Reward Placement engine
R=HFWL| environment

Updated Current state

Netlist | New Parameter

New state St+1

Fig.4. The comprehensive network structure of agent.

Subsequently, we introduce a Long ShortTerm Memory (LSTM) module equipped with layer normalization and
have included sequential layer, convolution, activation max pooling layer dropout and flatten layer, housing 16
hidden standard units with forget gate functionality. Notably, the feed-forward FC layers do not possess any
memory components. The incorporation of an LSTM, a recurrent layer, enables the model to make decisions based
on prior states, aligning with traditional optimization methodologies rooted in recurrent approaches. Subsequently,
this hidden state serves as input for the two branches of the network, each consisting of two fully-connected (FC)
layers. One branch concludes with an output softmax layer for policy, while the other ends with an output linear
layer for value estimation. Details regarding the network's parameters are provided in Table 4 for reference

RESULT

For the training and testing of our agent, we have chosen a set of 15 benchmark designs sourced from OpenCores,
the ISPD 2012 contest, and two RISC-V single cores, as outlined in Table 4. The initial eleven designs are utilized for
training purposes, while the remaining four serve as the test dataset.

Table.5. Benchmark statistics.
Part Inpu | Hidden Output
t
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1.Shared body 79 (64,32) 16(linear)
2.LSTM(6 16 (relu) 16x6
unroll) 16x6 | 16 16
3.Attention 16 Wa, Wc 11(softma
4.policy 16 (32,32) X)
5.value (relu) 1(linear)
(32,16
)(relu)

Table. 4 is the Benchmark Characteristics Derived from a Commercial 28nm Technology. Here, LL signifies the
maximum logic level, RCC represents the Rich Club Coefficient (in units of —4), and Sp. R. denotes the Spectral
Radius. RT corresponds to the mean placement runtime employing Innovus, measured in minutes.

Training Result There are a total of 6 images used out of which 3 images used for training and another 3 for testing.
To facilitate placement parameter optimization, we opt for the use of 3 filters, as per our preference. Each of these
filters comprises 81 neurons, forming a 9x9 grid of neurons. Each neuron in this grid is connected to 9 other
neurons, corresponding to the 3x3 receptive field, and considering there are 3 filters, the total number of neurons
in this configuration amounts to 243. In our deep neural network (DNN), we incorporate a total of 13 layers. For the
processing of each image, it is divided into a 3x3 grid. Convolution operations are performed on each grid, and we
utilize max-pooling layers to down sample the data, enabling us to comprehend the depth of each image effec tively.
(i) Number of iteration = 5

Receiver Operating Characteristic

Modsl Rewards. RL model loss

Fig.5 For 5 iterations (a) model reward and (b) RL model loss (c) Receiver operating .

Characteristic. The confusion matrix reveals specific values: TP (True Positives) equal to 6, TN (True Negatives)
equal to 0, FP (False Positives) equal to 3, and FN (False Negatives) equal to 3. This arises from a dataset comprising
6 images. However, the noteworthy observation is that the accuracy of the model stands at 75%. From Figure 5 (a),
itis evident that as the total number of iterations increases, there is a corresponding increase in the reward for both
training and testing. However, in Figure 5.1(b), a different trend is observed. As the number of iterations increases,
the error decreases. This suggests that with more iterations, the model's performance improves, leading to higher
rewards during training and reduced errors during testing. The Receiver Operating Characteristic (ROC) curve is a
valuable tool for assessing the performance of classification models, especially in scenarios where class distribution
is imbalanced or when the cost of false positives and false negatives varies. It helps in choosing an appropriate
threshold for making decisions based on the model's predictions, balancing the trade-off between sensitivity and
specificity. The ROC curve is generated and studied in our method to understand how well the images are learnt
based on no of iterations. In the fig 5 (c) TPR at 0.5 and "bending," you are likely referring to the true positive rate
at a specific threshold of 0.5 and observing that the ROC curve may be bending away from the diagonal, indicating
improved classification performance at that threshold. This is a desirable characteristic, as it implies that the model
is making better trade-offs between true positives and false positives. (ii) Number of iteration=100 From Figure
6(a), it is evident that as the total number of iterations increases, there is a corresponding increase in the reward
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for both training and testing. However, in Figure 6(b), a different trend is observed. As the number of iterations
increases, the error decreases. This suggests that with more iterations, the model's performance improves, leading
to higher rewards during training and reduced errors during testing. In this specific scenario, during 100 iterations
of the model's performance evaluation, the confusion matrix yields the following results: - True Positives (TP) = 6
,- True Negatives (TN) = 0 ,- False Positives (FP) = 0 ,- False Negatives (FN) = 6 These values are derived from a
dataset containing a total of 6 images. Remarkably, the accuracy achieved in this case is 100%. This remarkable
accuracy indicates that, with the benefit of 100 iterations, the model has successfully learned and accurately
classified all of the images in the dataset. In Fig.6(c) is observing a TPR of 1 (meaning perfect sensitivity) at a
threshold of 1, this suggests that all positive instances are correctly classified as positive, and there are no false
negatives. However, this is unusual in practice because it implies that the model is

Receiver Operating Characteristc

Model Rewards

RLmode! loss

P

0 @ © 0 teration
Renaten

Fig.6 For 100 iterations (a) model reward and (b) RL model loss (c) ROC curve.

Extremely confident in its predictions. The concept of "bending” in the ROC curve is more commonly associated
with changes in sensitivity and specificity as the threshold varies in a typical range between 0 and 1.

This table.6 presents a comparison of HPWL results after placement on training netlists, involving human-designed
placement, the Multi-Armed Bandit (MAB) method [23], the existing RL model and our RL-based approach. HPWL
values are expressed in meters (). The A column signifies the percentage of negative improvement compared to
the human-designed placement. Table.6 presents the most optimal wavelengths achieved by the Multi-Armed
Bandit (MAB) approach, the existing RL model and our RL agent during the training process. The human baseline
reference is established through the efforts of a skilled engineer who dedicated a day to parameter tuning. It's
noteworthy that our RL agent exhibits superior performance compared to MAB and the existing RL model on the
majority of netlists, achieving a remarkable 8.7% reduction in HPWL on the AVC-Nova Core benchmark. In
summary, all the methods demonstrate substantial improvements over the human baseline.

Table.6. Comparative Analysis of Half-Perimeter Bounding Box (HPWL) Following Placement on Training

Netlist
Netli | Huma | MAB RL Our RL
st n [23] (A %) | Algorithm
(A %)
PCI 0.01 0.0092 0.0092 | 0.00903
(-8.0%) | (-8.0%) | (-7.1%)
DMA | 0.149 | 0.139 0.135 0.12000000000
(-6.7%) | (-9.4%) | 000001 (-
9.3%)
819 0.3 0.28 0.28 0.25
(-6.7%) | (-6.7%) | (6.8%)
DES | 0.42 0.37 0.36 0.35
(-11.9%) | (- (14.6%)
14.3%)
VGA | 1.52 1.40 1.41 1.7
(-7.9%) (-7.2%) | (-7.7%)
ECG 0.72 0.65 0.68 0.65999999999
-9.7%) | (- 99999  (-5.5%)
5.5%)
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Rock | 1.33 1.27 1.20 1.9

et (-4.5%) | (-9.8%) | (-9.8%)

AES 1.49 1.44 1.40 1.8
(-2.7%) | (-6.0%) | (-6.9%)

AVC- | 1.59 1.49 1.46 1.5

nova (-6.3%) | (-8.2%) | (-8.7%)

Tate | 1.53 1.42 1.45 1.5
(-7.2%) | (-5.2%) | (-5.8%)

Testing Result

To assess the generalization capability of our agent, we evaluate its performance on four previously unseen test
netlists. This evaluation is conducted without any further training, meaning that the network parameters remain
fixed. The RL agent iteratively enhances an initially random parameter set by selecting the action (denoted as @)
with the highest predicted probability. Since our actions are deterministic, we can determine the resulting
parameter set, which is then provided as feedback to the network. This process is repeated until the estimated value
decreases for three consecutive updates. At this point, we backtrack to the parameter settings that yielded the
highest value.

Metric :“ma MAB |RL | OurRL
Circuit

WL(m) 1.65 | 157 | 153 [ 1.0
LDPC WNS(ns) | -0.005 0.001 (1).00 -0.002

Power(m | 162.1 | 156.4 | 154.

w) 0 9 77 150.63

WL(m) 6.31 6.24 |620 |6.1
?penP WNS(ns) | -0.003 0.001 0.0 0.0

Power(m | 192.0 | 190.9 | 189. 1611

w) 8 5 72 '

WL(m) 8.01 7.44 715 | 6.3
getcar WNS(ns) | -0.006 0.007 2.00 0.0

Power(m | 174.0 | 170.5 | 167.

w) 5 1 70 153.5

WL(m) 5.66 5.53 541 | 5.0
Leon3 WNS(ns) | -0.005 0.001 g.OO -0.001

Power(m | 156.8 | 156.0 | 155.

w) 3 0 51 153.2

This methodology allows us to identify a "good" candidate parameter set without actually performing any
placement. Subsequently, we execute a single placement using this parameter set and record the resulting
wirelength. In contrast, the Multi-Armed Bandit (MAB) approach relies on the reward signal to suggest new
parameter sets, necessitating the execution of actual placements by the tool. We monitor the best wirelength
obtained and allocate 50 sequential iterations for the MAB's optimization process. Table.7 displays the optimal
wirelength results obtained by our RL agent, RL and the MAB across all four test netlists. It's evident that our RL
agent consistently outperforms the MAB in terms of wirelength optimization, and notably, it achieves this superior
performance with just a single placement. To validate that the improvement in Half-Perimeter Wire Length (HPWL)
achieved during placement translates into a corresponding reduction in the final routed wirelength, we conducted
routing for the placed designs. The layouts of the OpenPiton Core designs are visually depicted in Figure 8. It
ensured that routing was completed without encountering congestion issues or Design Rule Check (DRC) violations.
The Power, Performance, and Area (PPA) metrics for the routed designs are summarized in Table 8. Our
observations indicate that the reduction in HPWL achieved during placement is consistently preserved after routing
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for all test designs. This translates to significant wirelength savings, with LDPC and Net Card designs achieving
reductions of 7.3% and 11% compared to the human baseline.

Numb MABJ[23]in Numbe RL[2] in My mb !’roposed RLNumb
m (% in m (%
Netlist Humajer Of(‘V negative | Ofne ative | Ofne ative er off
iterati[. /0 o5 iteratio | 5 iterati |8 iterati
improveme improvem improvement
on n on on
nt) ent) )
LDPC 1.14 20 |1.04 50 1.03 1 1.02 1
(-8.8%) (-9.77%) (-10.73%)
Openpt [5.26 |20 [5.11 50 5.9 1 5.4 1
(-2.9%) (-3.87%) (-4.87%)
Netcard [4.88 |20 [4.45 50 4.34 1 4.1 1
(-8.8%) (-11.1%) (-13.4%)
Leon3 3.52 |20 |3.37 50 3.29 1 3.2 1
(-4.3%) (-6.5%) (-8.7%)

TABLE 8. Comparison of PPA (Power, Performance, Area) after Routing on test set

HPWL= 499m . HPWL=5.9m

(a) Human design (runtime 7hrs) (b) Multi-armed bandit ( runtime 16hrs)
(c) RL (runtime 20min) d) Proposed RL ( runtime 16.6min )

HPWL: 5.11m

HPWL: 5.26m

Fig. 7. GDSII layout of Openpiton.

CONCLUSION

Deep RL is a promising approach for solving combinatorial problems, and enables domain adaptation and direct
optimization of non-differentiable objective functions. Training RL policies is a very challenging task, in part due to
the brittleness of gradient updates and the costliness of evaluating rewards. In this work, we provide an overview
of problem, and discuss strategies for training successful RL agents. our RL agent exhibits superior performance
compared to MAB and the existing RL model on the majority of netlists, achieving a remarkable 8.7% reduction in
HPWL on the AVC-Nova Core benchmark and the reduction in HPWL achieved during placement is consistently
preserved after routing for all test designs. This translates to significant wirelength savings, with LDPC and Net Card
designs achieving reductions of 7.3% and 11% compared to the human baseline.We predict a trend towards more
effective RL-based domain adaptation techniques, in which graph neural networks will play a key role in enabling
both higher sample efficiency and more optimal placements. We also foresee a future in which easy to use RL-based
placement tools will enable non-ML experts to harness and improve upon this powerful technique.
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