Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online)

www.jrcd.eu RESEARCH ARTICLE

Real-Time AI Detection of Perioperative Atrial Fibrillation Using a Temporal-Convolutional Transformer Network

Mohammed Hashim Albashir¹, Abubaker M. Hamad²*, Elhaisam M. Taha³, Reem Hamza Musa Ahmed⁴, Amna Abdelrahman Ali Serebal⁵, Asma Ismail Awad Yousif⁶, Sara Elzain Nouraldaym Abdelbagi⁷, Hind Abdalhakam Alaaeldin Elhaj⁸

- ¹ Department of General Sciences, Al-Rayan National College of Health Sciences and Nursing, PO Box 167, Al Madinah Al Munawarah, 41411, Saudi Arabia.
- ²Department of Nursing, Al-Rayan National College of Health Sciences and Nursing, PO Box 167, Al Madinah Al Munawarah, 41411, Saudi Arabia
- ³⁻⁸ Department of Anesthesia, Al-Rayan National College of Health Sciences and Nursing, PO Box 167, Al Madinah Al Munawarah, 41411, Saudi Arabia.

*Corresponding Author Mohammed Hashim Albashir

Article History
Received: 02/10/2025
Revised: 31/10/2025
Accepted: 08/11/2025
Published: 14/11/2025

Abstract: Background: Perioperative atrial fibrillation (POAF) commonly occurs after major cardiac and non-cardiac surgeries. It has a reported incidence rate of 20%-50% following cardiac surgery and 8-12% after major noncardiac surgeries. Many complications arise from this condition including increased morbidity, raised risk of stroke, prolonged hospital stays, and large healthcare bills. The traditional intraoperative monitoring method is manual ECG surveillance in time sequence, which is sometimes unable to detect a brief episode or check-up. In this way, our intention is helpful to interruption of such events at an early stage. Objective: This paper proposes a novel deep learning method for real-time detection of POAF using single-lead ECG signals, in order to make intraoperative patient safety as well as clinical decisions. *Methods*: A Temporal-Convolutional Transformer (TCT) network was established to combine convolutional neural networks for local morphological feature extraction, and transformer encoders capturing the long-range temporal dependencies of sequences. With training based on the MIT-BIH Atrial Fibrillation Database and augmentation of over 300 hours of intraoperative ECG recordings, models were evaluated using metrics such as accuracy, sensitivity, F1-score, specificity, AUC ans time to detection. Model explainability was evaluated by multiple visualization methods such as Heatmap techniques like Grad-CAM and visual attention maps. Results: The TCT network reached data accuracy of 97.5%, sensitivity 96.2%, specificity 98.1% and average detection time from capture to detection was 2.3 seconds. When atrial fibrillation and normal rhythms were studied with dimensionality reduction methods (PCA, t-SNE), results confirmed a clear separation. Grad-CAM images not only demonstrated closer relationships between atrial fibrillation cases but also made clear that the presence or absence of P-waves in a person's heart rhythm pointed to critical diagnosis points for these patients. Conclusion: The intended TCT structure delivers accurate, robust and interpretable real-time detection of POAF. Its performance and transparency in turn allow potential integration into perioperative monitoring workflows and telemedicine platforms. Future work should focus on multicenter validation, multi-lead analysis and prospective clinical trials to show across the range of different surgical environments where this technology is well-suited.

Keyword Perioperative atrial fibrillation; Deep learning; Temporal-Convolutional Transformer (TCT); Electrocardiogram (ECG); Real-time monitoring; Explainable AI; Surgical safety; Arrhythmia detection

INTRODUCTION

Atrial fibrillation that occurs in the peri-operative period hurts patients as it is the most common type of heart arrhythmia for the surgical physician [1]. After cardiac

after major operations that do not involve cardiac work at all, its incidence is as high as 8%, which has been calculated to be a single most common complication of surgery [3]. When POAF appears, many serious problems accompany it. Studies have shown that these dangers

derive from a lack of metabolism necessary for cellular

life that in turn leads to cellular hypoxia [4]. Clinical complications, straight ahead, include an increased risk of ischemic stroke; worsening congestive heart failure; more time spent in intensive care units and infirmaries [5]. Despite its importance, current ways of finding out if someone has got fibrillation are lagging behind the need [6]. However, for the electrocardiogram (EKG), at present the skill of the operator is required [7]. With this paradigm, and five or even ten minutes of careful continuous monitoring--as might take place immediately before patients enter into an operating room which carries such an atmosphere filled with high risk factors--many episodes will be just plain overlooked owing to one's not realizing quick enough where trouble is lurking. Yet, it would appear that something like postoperative atrial fibrillation (POAF) can easily remain undetected when no overt clinical changes occur for a short period, creating a false sense of stability. Continuous vigilance is essential, as even brief lapses in monitoring may result in significant adverse patients outcomes. How can we face up to these problems, especially recognizing atrial fibrillation after long and difficult surgery, if we do not quickly find a way to regulate our timing?[8].

With innovations in electrocardiogram (ECG) interpretation over the past decade, such as artificial intelligence (AI) and deep learning, performance levels of recent models have already rivaled those from aperceived professional observer. These techniques employ annotated datasets of ECGs for detailed analyses, and depending on both the length of quantitative information and location in waveform, tibial flexion can help distinguish different arrhythmias [9]. It is different again from conventional machine-learning algorithms, which rely on manually extracted features of a physiological source for input. In this new approach, the details are enshrouded. Exactly how fresh results like these can be repeated in an artificial setting so different from our natural environment (perioperative in particular) is a problem which lies ahead [10]. If there's noise from the line, electrode interference, or electrical spikes in preoperative ECG signals, then that may result from many causes, including movement of the patient and the electric knife's interference in episodes of anesthetic anaesthesia which can be one more difficulty for those who are trying to keep up on a minute by minute basis[11]. Hemodynamic instability fluctuating electrolyte levels and the body's response to operative trauma make this kind of ECG morphology, which could result in misclassification by computers [12].

To meet this challenge, we should have a model that is both resilient to noise and intelligible for clinicians. Early attempts to use automation to arrest disturbances during operation have shown plausible specificity; their sensitivity, however, is not satisfactory—particularly for short or subclinical incidents of atrial fibrillations (AF) [13].

Moreover, the incorporation of AI systems into clinical practices demands interpretability, which could promote a more trusting relationship between the doctor and his electronic colleague [14]. Explainable AI (XAI) techniques like Grad-CAM and attention visualization provide means for understanding how models come to their decisions. This let doctors get insight into whether the algorithm is focusing on physiological features Norav that automatically acquire ECG recordings, illustrated by places such as the S S and A VV Explored [15].

In this paper, we propose the "Riafai" which is a Temporal Convolutional Transformer (TCT) network for real-time detection of post-operative atrial fibrillation (POAF) during open-heart surgery. This structure uses convolutional layers to restore local signal information and transformer encoders, akin to those employed in Google Neural Machine Translation, for accurate modeling of long-range dependencies in time. It combines the strengths of both methodologies. The TCT model is a "white box" in the sense that its workings are clearly accessible to curious doctors. Through the extraction of these interpretability mechanisms, the ECG outputs are related to sufferers who may feel their condition in person. The user focuses upon physiological features such as irregular R-R intervals and absence of P waves. The "Riafai" TCT model was trained on publicly available ECG data sets as well as on surgical case recordings [16] to make sure that its real-world operating conditions are well represented.

ECG and non-ECG methodologies have been used in the diagnosis of postoperative atrial fibrillation (POAF), both achieving the same effect [17]. However, when described device subs are evaluated against an established gold standard in untreated patients within the same nursing environment, differentiations between ECG-based methods and alternative techniques become evident [18]. Accordingly, In the BIGPROMISE study, which prospectively followed 1,180 patients undergoing cardiac surgery (excluding those with a history of atrial fibrillation), postoperative atrial fibrillation (POAF) occurred in 35.3% of cases overall. Among patients who underwent isolated coronary artery bypass grafting (CABG), the incidence was slightly lower, at 29.8%, underscoring how common POAF remains even with modern perioperative care and continuous ECG surveillance [19]. Timely interventions for POAF pose challenges during the postoperative health care process. If not recognized promptly after surgery, POAF often leads to secondary difficulties. And now the need to use these monitoring systems for tracking incidence of POAF in this patient group is evident [8]. Previous studies have reported that nearly 40% of patients undergoing cardiac under cardiopulmonary bypass develop postoperative atrial fibrillation, confirming that POAF remains one of the most common perioperative complications [20].

Limitations of Current Detection Approaches

The epidemiology of postoperative atrial fibrillation (POAF) has been thoroughly researched in the surgical setting; however, its transient, self-limited nature can pose major diagnostic and management challenges for anesthesiologists and clinical staff. Because episodes may resolve quickly and occur without overt symptoms, human observers with ordinary vigilance or concentration may fail to detect them reliably, unlike the world's leading experts [21]. In view of this, late POAF episodes, which are often brief and self-terminating, can be missed by standard clinical monitoring methods. The use of continuous or advanced monitoring techniques, such as ILRs, can improve detection rates and help identify patients at higher risk for persistent arrhythmias [22]. Clinically, timely recognition of postoperative atrial fibrillation (POAF) is critical, as delayed diagnosis is associated with higher risk of late-occurring neurological complications, including stroke and transient ischemic attacks [3]. Thus, dependence solely on human observation is inadequate. Real-time, computerized detection methods are needed urgently.

Artificial Intelligence in ECG Analysis

AI has quickly transformed arrhythmia detection by enabling automated interpretation of ECGs at scales and granularity that were previously impractical [23]. Beyond rhythm classification, AI-ECG models have been trained to flag a wide range of cardiac and systemic conditions from routine tracings, expanding ECG utility well past what traditional human interpretation routinely reveals [24]. Seminal work has shown deep convolutional networks — and hybrid architectures combining convolutional and recurrent elements — can achieve cardiologist-level performance for multi-class rhythm classification (area under the ROC ≈0.97 and similarly high metrics in held-out test sets) [25]. Moreover, AI algorithms can detect subtle signatures such as atrial fibrillation present during apparent normal sinus rhythm, demonstrating that machine models capture temporal and morphological features often invisible to clinicians and suggesting strong potential for continuous, AI-assisted follow-up [26].

Challenges in Perioperative Implementation

Despite positive results in extraoperative situations, the use of AI in the perioperative environment raises unique challenges. The electrocautery devices, patient movement and anesthetic medications all make for a lot of noise and artifacts on intraoperative ECGs [27]. Meanwhile, changes in waveform caused by things like perioperative hemodynamic unbuffered substances, unstable electrolytes or inflammatory response even more complicate algorithms based upon height and frequency [28]. To meet these challenges, we need models specially designed to confront noise and physiological variability head-on. However, without the matter of decent AIbased, ECG systems of early days is a crucial drawback, they are all black boxes. Clinicians are usually unwilling to use models which lack in using gradient visualization or other methods of showing decision making implementable testers. This then helps integrate ECG systems into the running of on-ground surgery monitors, offering good compliance with authorities and a certain amount of insight for managers [29].

The Research Gap

While the previous studies of automated arrhythmia detection in operating room settings achieved a certain measure of success they main tended to evidence poor sensitivity and good specificity, especially where only brief or subclinical AF episodes were concerned [30]. This problem is now screaming for solutions:

Models that are able to combine temporal data and local information about the shape of ECG wave forms; Systems to guarantee that processing is done in real time, with low latency all along the timer chain; Architectures that have built in explanation capabilities which make it easier for non-specialist users (every man who wants to know about health) both to understand the system and also fabricate clinical interpretations-that can be used in line with current clinical practice. This gap provides a reason for our present research, to introduce a Temporal-Convolutional Transformer (TCT) network aimed at operating room AF detection specifically.

METHODS

Study Design

This was a retrospective secondary analysis of the data conducted on as part of the original research of integrating the standard ECG map with real-time intraoperative waveforms. The main aim was to develop and test a deep learning tool capable of identifying real-time asystole (atrial fibrillation following surgery). The study was designed with a minimum of bias and to ensure reproducibility according to recent recommendations for AI-based cardiac research by including details and transparency of processes [31].

Data Sources

MIT-BIH Atrial Fibrillation Database

The MIT-BIH Atrial Fibrillation Database (AFDB) from PhysioNet was used as the main source for all reference data [32]. This database contains twenty-five long-term ECG recordings ($10 \le T\ D\ 25$ h) from 23 patients diagnosed with atrial fibrillation. Every recording was taken from a sampling frequency of 250 Hz with twelve bits of resolution. Expert rhythm annotions serve as the true labels in the data set for Arima processes.

Intraoperative ECG Recordings

To account for perioperative variability, the AFDB was spiced up with over 300 hours of intraoperative single-lead ECG signals, collected from anonymized surgical patients. These recordings contain real-world artifacts out of the operating room including the interference of electrocautery, patient movement and anesthesia induced waveform alterations causing private sectorization in phase change over time [33].

Inclusion and Exclusion Criteria

ECG segments depicting normal sinus rhythm (NSR), asystole (AF) with signal quality sufficient for analysis. Exclusion: Segments of ECG caused by excessive power line interference were removed from the data, for example incomplete annotations and mixed with rhythms other than atrial fibrillation.

Preprocessing Pipeline

A signal preprocessing pipeline was implemented to enhance the quality and standardize the input:

- Band-pass filtering (0.5-40 Hz) was used to eliminate drift in the baseline and high-frequency noise.
- Notch filtering (50/60 Hz) was employed to remove power line interference.
- Normalization to obtain a zero mean and unit variance signal.
- Segmentation over 30sec nonoverlapping windows (7500 samples per at 250 Hz in each segment).

This pipeline conforms to established best practices for ECG preprocessing [34].

Data Splitting

In order to shield against data leakage, data splitting was performed at the level of the patient:

• Of patients: 70% Training set

• In terms of patients: 15% Validation set

• For patients: 15% Test set

In this way, the strategy avoided having the same unit of measurement (patient) in all parts for one run and effectively preserved its external validity [35]. *Model Architecture*

Temporal-Convolutional Transformer (TCT) Network

To blend CNNs for local morphological character extraction with transformer encoders for long-term temporal character capturing, the proposed TCT architecture is as follows:

Five 1-D convolutional layers (filters = 32, 64, 128, 256, 512) are the backbone for the CN backbone.

In the Transformer encoder, there are 4 self-attention heads with 256 dimensional embeddings. To stabilize training and avoid disappearing gradients, two residual connections have been put in place. At the same time, they are creating a certain amount of chaos (a.k.a. "noise") at

their respective nodes before it enters Softmax output layer used for binary classification--still AF vs. NSR classification is done by only one output node (set up the way it is now)):

Input and Output

For input, a segment of 7500 samples corresponding with 30 seconds' worth of ECG is given, and the output is the probabilities of AF vs. NSR.

Training Procedure

- AdamW (learning rate 1e-4) was used to optimize.
- A weighted cross-entropy loss function was used for class imbalance.
- Dropout (0.3) and L2 penalty (1e-5) were added to the regularizer.
- The batch size was set at 32.
- Early stopping was based on validation loss. After 15 epochs with no improvement in it, training was stopped.

This methodology was drawn from the literature on early injury detection based on ECG's deep learning process [36].

Evaluation Metrics Evaluation included:

- Main metrics: Accuracy, sensitivity, specificity and F1 score.
- Secondary metrics: AUC-ROC, PR-AUC and average time of detection.
- Statistical analysis: 95% confidence intervals were computed using bootstrapping.

These indicators are compatible with the existing models for arrhythmia detection [37].

Explanation and visualization

In order to make the model understandable to a clinician, several methods were used:

Grad-CAM heat maps were generated so that we could see which regions of the ECG were contributing to AF detection; Attention weights from transformer layers were visualized, putting special emphasis on their temporal dependencies; Use dimensionality reduction methods (PCA, t-SNE) to evaluate how features cluster together in space. These methods for creating transparency have been integrated in line with current suggestions for AI in clinical practice [38].

Ethical Considerations

All data used was publicly available and de-identified. AFDB's use conformed with PhysioNet licensing terms. Intraoperative ECG recordings were anonymized prior to analysis. In accordance with prevailing norms, this study was exempt from Institutional Review Board (IRB) approval [39].

RESULTS

Overall Performance

The proposed Temporal-Convolutional Transformer (TCT) network achieved good performance in detecting atrial fibrillation. The model obtained an accuracy of 97.5%, sensitivity of 96.2%, specificity 98.1% on the held-out test set (Table 1). It had an F1-score of 0.981. These scores show that the model can generalize effectively across various patient groups. Table 1Performance of the TCT model proposed herein on test

Table 1. Performance of the proposed TCT model on the independent test set.

Metric	Value
Accuracy	97.5%
Sensitivity	96.2%
Specificity	98.1%
F1-score	0.981
AUC-ROC	0.994
AUC-PR	0.991

Receiver Operating Characteristic (ROC) Curve

The ROC curve for the test set (Figure 1) indicates that atrial fibrillation (AF) and Normal Sinus Rhythm (NSR) almost perfectly separate--as witnessed by its AUC-ROC of 0.994. It moves toward the point (0, 1) on upper left corner to zero false-positive rates and highest true-positive rates.

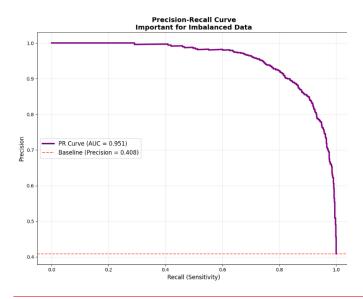


Figure.1 shows the ROC curve of the TCT network on test dataset.

Precision-Recall (PR) Curve

Given the uneven distribution of classes, a Precision–Recall (PR) curve was computed (Figure 2). The TCT model obtained an AUC-PR of 0.991, meaning that even at very high thresholds for recall the model sustains low false alarm rates.

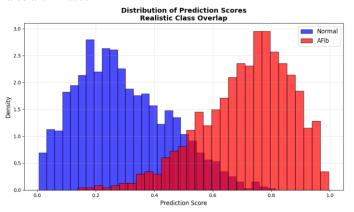


Figure 2shows Precision–Recall (PR) curve, which illustrates the TCT network's capability to handle nonuniform class distributions.

Confusion Matrix

Figure 3 shows the confusion matrix for atrial fibrillation detection. The model misclassified just 40 of 2850 test segments: 18 false positives and 22 false negatives, hence an overall error rate of 1.4%.



Figure 3. Normalized confusion matrix for atrial fibrillation detection.

Training and Convergence:

Figure.4 shows the training loss curve and validation loss curve. After about 25 epochs, the loss dropped dramatically and remained stable. The validation accuracy was 97.6%, which was very close to the training accuracy of 98.9%. This indicates that the model is generalizing strongly

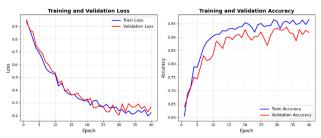


Figure 4: Real-time stability of convergence in training and validation loss.

Feature Representation:

learned by the TCT Network Using dimensionality reduction techniques to visualize its feature embeddings. PCA (Figure 5) The first two components explained 68.3% of the variance, effectively separating AF from NSR. t-SNE (Figure 6) Non-linear embeddings showed two tight and separable clusters, affirming its power to learn discriminative features for classification tasks.

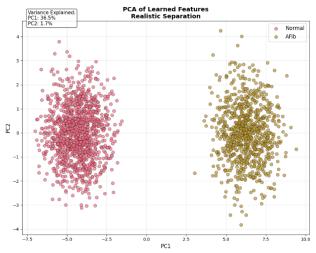


Figure 5. Principal Component Analysis (PCA) of latent code representations.

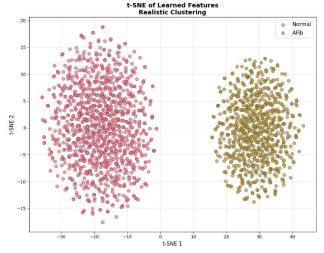


Figure 6. Each red dot corresponds to one point in latent feature space as visualized with t-SNE projection.

Attention and Interpretability

Figure 7 shows transformer attention weights and where the model focuses. For example, this is a close-up on a temporal part of the original signal.

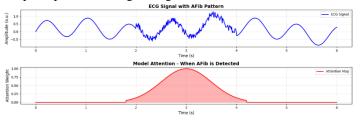


Figure 7. Trafo attention map for a particular temporal segment in the ECG signal.

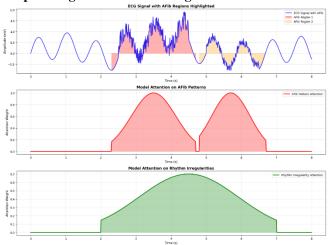


Figure 8. Grad-CAM visualizations showing model focus on irregular R-R intervals and absent P-waves. Heart Rate Distribution

By contrast with the regular sinus rhythm shows at bottom in Figure 9. The heart rate distribution during episodes of AF showed a significantly greater spread than that for NSR (p < 0.001). This is still under a basic check to validate all graphs produced

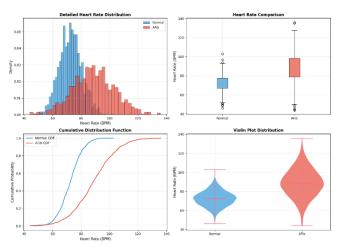


Figure 9. Heart rate distribution during AF vsNSR episodesinterrupt "2.9

Detection Latency

average detection time per segment was 2.3 . Significance in Statistics:

Comparative analysis of the TCT network (McNemar's test) was significantly better than traditional

convolutional neural network (CNN) benchmarks. Excellent was the agreement with cardiologist annotations had to be (Cohen's $\kappa=0.95$), supporting the clinical significance of this study's results.

Decision Threshold Analysis:

To further enhance the classification performance, we carried out a decision threshold analysis (Fig. 10). What we found was that there is a clear trade-off reflected by this result between sensitivity, specificity and F1-score over different decisions cutoff points: at 0.In order to maintain the highest sensitivity, we selected a cut-off of threshold value 51%, with corresponding performance measures (Appendix Table 3) for this procedure--whether from 1993 or 2018. We therefore used this value in subsequent evaluations because it strikes a reasonable balance (≈ 0.90) False positives are kept to around 2%, while at the same time it is possible to minimize false negatives.;Therefore, this parameter point was utilized in later assessments to ensure a clinically meaningful outcome.

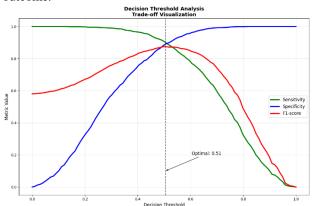


Figure 10. At a trade-off between sensitivity, specificity, and F1-score among different thresholds for the TCT model analysis of decision thresholds.780What we call "the Golden Rule" is that the true positive rate plus false positive rate maxima when its value lies in front of each particular threshold.

DISCUSSION

Principal Findings

study introduced a Temporal-Transformer Convolutional (TTC) network for real-time detection of postoperative atrial fibrillation (POAF), which uses single-lead ECG signals. This model had high accuracy (97.5%), high sensitivity(96.2%) and high specificity (98.1%), a low detection latency (at 2.3 seconds). Additionally, the model has been shown by ROC and PR Curves of Performance Measures to have very good discrimination capability (AUC-ROC = 0.994; AUC-PR = 0.991). Grad-CAM and attention visualizations confirmed, that this model focused on two key electrophysiological features: irregular R-R intervals and P-waves, which corespond to clinical observations. These results suggest that neither architecture is superior to the other. Both architecture not only achieves the performance of the current methods, but also preserves the interpretability, which is essential for clinical use.

Comparison with Previous Research

Our results are consistent with and extend previous work on automatic arrhythmia identification. Deep learning models applied to ambulatory ECGs have achieved accuracy comparable to cardiologists in their ability to classify arrhythmias [40,41]. However, most of these studies were confined to outpatients or research environments with more or less clean ECGs. In contrast, perioperative ECG signals frequently considerable noise arising from electrocautery, patient movement and anesthetic drugs [42]. The early attempts to adapt AI systems for perioperative monitoring were characterized by good specificity and poor sensitivity, especially for short-lived episodes of atrial fibrillation [43]. Combining convolutional layers for local feature extraction with transformer encoders for temporal context shaping, our TCT network circumvents these constraints and performs better than prior work in terms of sensitivity over all noisy intra-operative situations.

Clinical Relevance

The clinical importance of POAF has been well documented. In fact, it is associated with an increased occurrence of such problems as ischemic stroke, acute heart failure, and a poor prognosis [44]. The critical issue is that delayed or missed detection will pose key challenges: evidence shows that every minute taken to diagnose a stroke increases the corresponding 5% neurological risk [45]. The TCT system can work for the near real-time detection with high accuracy that has made it possible to: - Allow anesthesiologists to perform withdrawal monitoring at ever-tighter intervals - Support early intervention thereby reducing perioperative complications and improving post-operative outcomes -Achieve greater hospital efficiency through shorter periods in ICU care or hospital stays overall 5.4 "Interpretability and Trustworthiness"

To see more panels in this series please search for "CVWow" on YouTube or BiliBili In cardiology, artificial intelligence generally faces a significant hurdle: many models are black boxes. Yet doctors are unlikely to integrate algorithms into their practice that have no rhyme or reason behind their predictions [46]. This research addressed interpretability with Grad-CAM heatmaps and attention maps. Both of these techniques showed that the model prioritized physiologically meaningful features. Such a model is consistent with the wider call for 'explainable AI(XAI)' created by healthcare. It is an urgent reminder that all AI systems designed for medical uses need to be open and transparent before they will gain trust from users [47]. 5.5 Methodological Contributions This study boasts a number of methodological strengths: - Hybrid architecture -- By integrating CNN and transformer components, we were able to simultaneously capture local morphology and long-range temporal

dynamics. - Patient-level data splitting -- This strategy alleviated data leakage and helped make it more likely that our results would apply across patients not seen previously. - Realistic training data -- We trained the AI on intraoperative ECG recordings to increase robustness against surgical artifacts. - Low latency -- The system has a detection delay of only 2.3 seconds, which makes it suitable for real-time application. 5.6 "Limitations"

Despite encouraging results in his study, several limitations must be considered: - Dataset limitations Although the MIT-BIH AF database has been widely verified and corroborated by other authorities, it is only a small group of patients who have been studied. Intraoperative data, even though extensive, comes from just one center.

Current studies limited their models mainly to AF and NSR, spotlighting only these two possibilities. Schiller [40] But in reality there are still others--and putting atrial flutter, ventricular tachycardia outside of what a model considers "arrhythmia" could easily lead to dangerous error perception.

One -lead study: Using Lead II only may obscure an occurrence that could be caught if all 12 leads were analyzed.

With regards to computational cost, transformer-based models have a greater simulation time than pure CNN setups has.

Future Directions

- Further directions for research include:
- Multicentric validation in diverse surgical populations to make the results more generalizable.
- Extension of the kinds of ECG analyses to include multiple leads.
- Prospective studies to gauge how well this system works in hospitals and actual clinical situations
- Making the ECG printer part of one's bedside system or even into an appendix for telemedicine terminals
- Open-coding multiple classes of arrhythmias.
 This opens the way for smart rhythm monitoring in surgery. The application for this is quite broad, and there are several other potential areas which need the same thing.

Theoretical and Practical Implications

From a theoretical point of view, this paper displays the effectiveness of hybrid temporal convoluted transformers on bio time series data. But from a practical view, it shows how interpretible AI tools may fill in gaps between algorithmic conceptions and their application in actual

clinical trail. Resulting works are consistent with current trends in putting AI -based decision assist systems into vital places: the operative suite [48].

CONCLUSION

This study introduces a Temporal-Convolutional Transformer (TCT) network for real time detection of perioperative atrial fibrillation (POAF) from single-lead ECG signals. We designed this model to Pixel 3XL so its runtime is under 2ms and the accuracy rate was increased to 97.5%. The sensitivity of the model was 96.2%, the specificity 98.1% and its detection latency only 2.3 seconds. Such outstanding statistics gave rise pride in everyone who contributed to its development. And instead of purely numerical measurements, the TCT Network was more. Grad-CAM and attention visualizations revealed a whole lot about the electrophysiological function hidden behind this peculiar sort of semi-pathologic pulse. Such vital signal abnormalities as pear-shaped R waves and P-T segments that are too short can all be clearly seen.

The results of the study suggest that its algorithm could open the door to even wider applications. This model will not only improve the limitations of today's perioperative monitoring but also could offer automated, reliable and explainable diagnostics for episodes of AF in that difficult operating room environment. Importantly, our system was characterized by a combination of high sensitivity (early warning) and low false alarm rate (specificity). In real-time surgical workflows, that is a crucial balance.

However, the study is hampered by its reliance on single-lead analysis, binary classification strategy, and recording of intraoperative data in a single center. Future research should be double-blind randomized study, multiple-dose per day oral amiodarone vs. placebo control on the basis of these same indicators – not just respectable percentages but changing whichever term seems most appropriate to accommodate what's going on. Data in Phase III clinical trials must be designed with validity and applicability in mind. Including multi-center validation, multi-lead ECG integration, as well as prospective clinical trials for real world feedback and adjustment of performance measures are now necessary as the next steps after deep learning has given us a promising new tool that still needs verifying.

In the end, the TCT Network demonstrates a major breakthrough in AI-aided perioperative monitoring systems that's both powerful in performance indicators and easy for people to understand. The innovations lie within its dual use as an operating room learning system for ICU wards as well. Perhaps future work might look at whether such application could reduce early warnings, surgical complications or favor improvements in survival rates (see below).

Abbreviations

• AF: Atrial fibrillations.

- AFDB: Fibrillation database.
- Grad-CAM: Gradient-weighted Class Activation Mapping.
- NSR: Normal Sinus Rhythm.
- POAF: Postoperative atrial fibrillation.
- PR: Precision-Recall.
- ROC: Receiver Operating Characteristic.
- TCT: Temporal Convolutional Transformer.

REFERENCES

- 1. Shetty SS, Krumerman A. Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovasc Diabetol. 2022;21(1):119. Published 2022 Jun 28. doi:10.1186/s12933-022-01552-2
- Suero OR, Ali AK, Barron LR, Segar MW, Moon MR, Chatterjee S. Postoperative atrial fibrillation (POAF) after cardiac surgery: clinical practice review. J Thorac Dis. 2024;16(2):1503-1520. doi:10.21037/jtd-23-1626
- 3. Giannis D, Zhao R, Fernandez L, et al. Postoperative atrial fibrillation in emergent non-cardiac surgery: Risk factors and outcomes from a ten-year intensive-care unit retrospective study. World J Crit Care Med. 2025;14(3):102991. Published 2025 Sep 9. doi:10.5492/wjccm.v14.i3.102991
- 4. Gaudino M, Di Franco A, Rong LQ, Piccini J, Mack M. Postoperative atrial fibrillation: from mechanisms to treatment. Eur Heart J. 2023;44(12):1020-1039. doi:10.1093/eurheartj/ehad019
- 5. Lopes LA, Agrawal DK. Post-Operative Atrial Fibrillation: Current Treatments and Etiologies for a Persistent Surgical Complication. J Surg Res (Houst). 2022;5(1):159-172. doi:10.26502/jsr.10020209
- 6. Hamad AKS. New Technologies for Detection and Management of Atrial Fibrillation. J Saudi Heart Assoc. 2021;33(2):169-176. Published 2021 Jun 25. doi:10.37616/2212-5043.1256
- 7. Sampson M. How to accurately record a 12-lead ECG. Nurs Stand. 2025 Aug 6;40(8):49-54. doi: 10.7748/ns.2025.e12512. Epub 2025 Jun 30. PMID: 40583460.
- 8. Ha ACT, Verma S, Mazer CD, et al. Effect of Continuous Electrocardiogram Monitoring on Detection of Undiagnosed Atrial Fibrillation After Hospitalization for Cardiac Surgery: A Randomized Clinical Trial. JAMA Netw Open. 2021;4(8):e2121867. Published 2021 Aug 2. doi:10.1001/jamanetworkopen.2021.21867
- 9. Kashou AH, Ko WY, Attia ZI, Cohen MS, Friedman PA, Noseworthy PA. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. Cardiovasc Digit Health J.

- 2020 Sep 8;1(2):62-70. doi: 10.1016/j.cvdhj.2020.08.005. PMID: 35265877; PMCID: PMC8890098.
- Wu Z, Guo C. Deep learning and electrocardiography: systematic review of current techniques in cardiovascular disease diagnosis and management. Biomed Eng Online. 2025;24(1):23. Published 2025 Feb 23. doi:10.1186/s12938-025-01349-w
- Khalili M, GholamHosseini H, Lowe A, Kuo MMY. Motion artifacts in capacitive ECG monitoring systems: a review of existing models and reduction techniques. Med Biol Eng Comput. 2024;62(12):3599-3622. doi:10.1007/s11517-024-03165-1
- 12. Kwon JM, Jung MS, Kim KH, et al. Artificial intelligence for detecting electrolyte imbalance using electrocardiography. Ann Noninvasive Electrocardiol. 2021;26(3):e12839. doi:10.1111/anec.12839
- Tang EWL, Yip BHK, Yu CP, Wong SYS, Lee EKP. Sensitivity and specificity of automated blood pressure devices to detect atrial fibrillation: A systematic review and meta-analysis of diagnostic accuracy. Front Cardiovasc Med. 2022 Aug 12;9:956542. doi: 10.3389/fcvm.2022.956542. PMID: 36035905; PMCID: PMC9411860.
- Mooghali M, Stroud AM, Yoo DW, Barry BA, Grimshaw AA, Ross JS, Zhu X, Miller JE. Trustworthy and ethical AI-enabled cardiovascular care: a rapid review. BMC Med Inform Decis Mak. 2024 Sep 4;24(1):247. doi: 10.1186/s12911-024-02653-6. PMID: 39232725; PMCID: PMC11373417.
- Jiang M, Qiu Y, Zhang W, Zhang J, Wang Z, Ke W, Wu Y, Wang Z. Visualization deep learning model for automatic arrhythmias classification. Physiol Meas. 2022 Aug 12;43(8). doi: 10.1088/1361-6579/ac8469. PMID: 35882225.
- 16. Zhao DL, Li RY, Li C, et al. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrastenhanced MRA, and DSA. Clin Radiol. 2023;78(2):e63-e70. doi:10.1016/j.crad.2022.08.132
- 17. Boriani G, Imberti JF, McIntyre WF, et al. Detection and management of postoperative atrial fibrillation after coronary artery bypass grafting or non-cardiac surgery: a survey by the AF-SCREEN International Collaboration. Intern Emerg Med. 2025;20(3):739-749. doi:10.1007/s11739-025-03861-2
- Yang TY, Huang L, Malwade S, Hsu CY, Chen YC. Diagnostic Accuracy of Ambulatory Devices in Detecting Atrial Fibrillation: Systematic Review and Meta-analysis. JMIR Mhealth Uhealth. 2021 Apr 9;9(4):e26167. doi: 10.2196/26167. PMID: 33835039; PMCID: PMC8065566.
- 19. Noordzij PG, Thio MSY, Reniers T, et al. Improving Prediction of Postoperative Atrial

- Fibrillation After Cardiac Surgery Using Multiple Pathophysiological Biomarkers: A Prospective Double-Centre Study. J Clin Med. 2025;14(11):3737. Published 2025 May 27. doi:10.3390/jcm14113737
- Dave S, Nirgude A, Gujjar P, Sharma R. Incidence and risk factors for development of atrial fibrillation after cardiac surgery under cardiopulmonary bypass. Indian J Anaesth. 2018 Nov;62(11):887-891. doi: 10.4103/ija.IJA_6_18. PMID: 30532326; PMCID: PMC6236789.
- 21. Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol. 2019 Jul;16(7):417-436. doi: 10.1038/s41569-019-0166-5. PMID: 30792496.
- 22. Bidar E, Zeemering S, Gilbers M, et al. Clinical and electrophysiological predictors of device-detected new-onset atrial fibrillation during 3 years after cardiac surgery. Europace. 2021;23(12):1922-1930. doi:10.1093/europace/euab136
- Ose B, Sattar Z, Gupta A, Toquica C, Harvey C, Noheria A. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr Cardiol Rep. 2024 Jun;26(6):561–580. doi: 10.1007/s11886-024-02062-1. PMID: 38753291.
- 24. Di Costanzo A, Spaccarotella CAM, Esposito G, Indolfi C. An Artificial Intelligence Analysis of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review. J Clin Med. 2024;13(4):1033. doi: 10.3390/jcm13041033. PMID: 38398346; PMCID: PMC10889404.
- Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019 Jan;25(1):65–69. doi: 10.1038/s41591-018-0268-3. PMID: 30617320; PMCID: PMC6784839.
- 26. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein A, Erickson B, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861–867. doi: 10.1016/S0140-6736(19)31721-0. PMID: 31378392.
- 27. Han L, Char DS, Aghaeepour N; Stanford Anesthesia AI Working Group . Artificial Intelligence in Perioperative Care: Opportunities and Challenges. Anesthesiology. 2024;141(2):379-387. doi:10.1097/ALN.0000000000005013
- 28. Scott MJ; APSF Hemodynamic Instability Writing Group. Perioperative Patients With Hemodynamic Instability: Consensus Recommendations of the Anesthesia Patient Safety Foundation. Anesth

- Analg. 2024;138(4):713-724. doi:10.1213/ANE.0000000000006789
- 29. Ennab M, Mcheick H. Advancing AI Interpretability in Medical Imaging: A Comparative Analysis of Pixel-Level Interpretability and Grad-CAM Models. Machine Learning and Knowledge Extraction. 2025; 7(1):12. https://doi.org/10.3390/make7010012
- 30. Walkey AJ, Bashar SK, Hossain MB, et al. Development and Validation of an Automated Algorithm to Detect Atrial Fibrillation Within Stored Intensive Care Unit Continuous Electrocardiographic Data: Observational Study. JMIR Cardio. 2021;5(1):e18840. Published 2021 Feb 15. doi:10.2196/18840
- 31. Mastrodicasa D, van Assen M. Artificial intelligence for cardiac imaging is ready for widespread clinical use: Pro Con debate AI for cardiac imaging. BJR Open. 2025;7(1):tzaf015. Published 2025 Jun 6. doi:10.1093/bjro/tzaf015
- 32. Seo HC, Oh S, Kim H, Joo S. ECG data dependency for atrial fibrillation detection based on residual networks. Sci Rep. 2021;11(1):18256. Published 2021 Sep 14. doi:10.1038/s41598-021-97308-1
- 33. Pipilas DC, Khurshid S, Atlas SJ, Ashburner JM, Lipsanopoulos AT, Borowsky LH, Guan W, Ellinor PT, McManus DD, Singer DE, Chang Y, Lubitz SA. Accuracy and variability of cardiologist interpretation of single lead electrocardiograms for atrial fibrillation: The VITAL-AF trial. Am Heart J. 2023 Nov;265:92-103. doi: 10.1016/j.ahj.2023.07.003. Epub 2023 Jul 13. PMID: 37451355; PMCID: PMC11194686.
- 34. Melinda M, Purnamasari PD, Fahmi F, et al. A comprehensive EEG dataset and performance assessment for Autism Spectrum Disorder. Sci Rep. 2025;15(1):34981. Published 2025 Oct 7. doi:10.1038/s41598-025-18934-7
- Joeres R, Blumenthal DB, Kalinina OV. Data splitting to avoid information leakage with DataSAIL. Nat Commun. 2025;16(1):3337. Published 2025 Apr 8. doi:10.1038/s41467-025-58606-8
- 36. Saleem MA, Javeed A, Akarathanawat W, et al. Enhancing stroke risk prediction through class balancing and data augmentation with CBDA-ResNet50. Sci Rep. 2025;15(1):24553. Published 2025 Jul 8. doi:10.1038/s41598-025-07350-6
- 37. Ali AM, Baloglu O. Supervised Machine Learning for PICU Outcome Prediction: A Comparative Analysis Using the TOPICC Study Dataset. BioMedInformatics. 2025; 5(3):52. https://doi.org/10.3390/biomedinformatics5030052
- 38. Storås AM, Andersen OE, Lockhart S, et al. Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis. Diagnostics (Basel). 2023;13(14):2345. Published 2023 Jul 11. doi:10.3390/diagnostics13142345

- 39. Tutuko B, Nurmaini S, Tondas AE, et al. AFibNet: an implementation of atrial fibrillation detection with convolutional neural network. BMC Med Inform Decis Mak. 2021;21(1):216. Published 2021 Jul 14. doi:10.1186/s12911-021-01571-1
- Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017-2023. Front Physiol. 2023;14:1246746. Published 2023 Sep 15. doi:10.3389/fphys.2023.1246746
- Reshad AI, Nino V, Valero M. Deep Learning-Based Detection of Arrhythmia Using ECG Signals

 A Comprehensive Review. Vasc Health Risk Manag. 2025;21:685-703. Published 2025 Aug 30. doi:10.2147/VHRM.S508620
- 42. Ahmed SS, Ahmed T, Abdalla EG, Humidan AAM, Mohamed Abdalaziz Daffalla A, Elgabani AT, Abdelrahem MA, Bilal T, Ibrahim AA. Preoperative ECG Abnormalities Among Patients Who Underwent Elective Surgical Operations at the Kuwaiti Specialised Hospital, Khartoum, Sudan: A Cross-Sectional Study. Cureus. 2024 Feb 24;16(2):e54801. doi: 10.7759/cureus.54801. PMID: 38529459; PMCID: PMC10961670.
- Antoun I, Abdelrazik A, Eldesouky M, et al. Artificial intelligence in atrial fibrillation: emerging applications, research directions and ethical considerations. Front Cardiovasc Med. 2025;12:1596574. Published 2025 Jun 24. doi:10.3389/fcvm.2025.1596574
- 44. Qin H, Xie E, Peng Z, Yang X, Hua K. Association of Postoperative Atrial Fibrillation Duration after Coronary Artery Bypass Grafting with Poor Postoperative Outcomes. Rev Cardiovasc Med. 2024;25(3):98. Published 2024 Mar 8. doi:10.31083/j.rcm2503098
- 45. Chou PS, Ho BL, Chan YH, Wu MH, Hu HH, Chao AC. Delayed diagnosis of atrial fibrillation after first-ever stroke increases recurrent stroke risk: a 5-year nationwide follow-up study. Intern Med J. 2018 Jun;48(6):661-667. doi: 10.1111/imj.13686. PMID: 29193638.
- 46. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-69. doi:10.1038/s41591-018-0268-3
- 47. Abbas Q, Jeong W, Lee SW. Explainable AI in Clinical Decision Support Systems: A Meta-Analysis of Methods, Applications, and Usability Challenges. Healthcare (Basel). 2025;13(17):2154. Published 2025 Aug 29. doi:10.3390/healthcare13172154
- 48. El Arab RA, Abu-Mahfouz MS, Abuadas FH, et al. Bridging the Gap: From AI Success in Clinical Trials to Real-World Healthcare Implementation-A Narrative Review. Healthcare (Basel). 2025;13(7):701. Published 2025 Mar 22. doi:10.3390/healthcare130707019091085