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Abstract: Background : Perioperative atrial fibrillation (POAF) commonly occurs after 

major cardiac and non-cardiac surgeries. It has a reported incidence rate of 20%–50% 

following cardiac surgery and 8–12% after major noncardiac surgeries. Many complications 

arise from this condition including increased morbidity, raised risk of stroke, prolonged 

hospital stays, and large healthcare bills. The traditional intraoperative monitoring method is 

manual ECG surveillance in time sequence, which is sometimes unable to detect a brief 

episode or check-up. In this way, our intention is helpful to interruption of such events at an 

early stage. Objective :This paper proposes a novel deep learning method for real-time 

detection of POAF using single-lead ECG signals, in order to make intraoperative patient 

safety as well as clinical decisions. Methods : A Temporal-Convolutional Transformer (TCT) 

network was established to combine convolutional neural networks for local morphological 

feature extraction, and transformer encoders capturing the long-range temporal dependencies 

of sequences. With training based on the MIT-BIH Atrial Fibrillation Database and 

augmentation of over 300 hours of intraoperative ECG recordings, models were evaluated 

using metrics such as accuracy, sensitivity, F1-score, specificity, AUC ans time to detection. 

Model explainability was evaluated by multiple visualization methods such as Heatmap 

techniques like Grad-CAM and visual attention maps. Results : The TCT network reached 

data accuracy of 97.5%, sensitivity 96.2%, specificity 98.1% and average detection time from 

capture to detection was 2.3 seconds. When atrial fibrillation and normal rhythms were 

studied with dimensionality reduction methods (PCA, t-SNE), results confirmed a clear 

separation. Grad-CAM images not only demonstrated closer relationships between atrial 

fibrillation cases but also made clear that the presence or absence of P-waves in a person's 

heart rhythm pointed to critical diagnosis points for these patients. Conclusion :The intended 

TCT structure delivers accurate, robust and interpretable real-time detection of POAF. Its 

performance and transparency in turn allow potential integration into perioperative 

monitoring workflows and telemedicine platforms. Future work should focus on multicenter 

validation, multi-lead analysis and prospective clinical trials to show across the range of 

different surgical environments where this technology is well-suited. 

 

Keyword Perioperative atrial fibrillation; Deep learning; Temporal-Convolutional 

Transformer (TCT); Electrocardiogram (ECG); Real-time monitoring; Explainable AI; 

Surgical safety; Arrhythmia detection 

INTRODUCTION  
Atrial fibrillation that occurs in the peri-operative period 

hurts patients as it is the most common type of heart 

arrhythmia for the surgical physician [1]. After cardiac 

surgery, 20 to 50 percent of people have POAF[2]. And 

after major operations that do not involve cardiac work at 

all, its incidence is as high as 8%, which has been 

calculated to be a single most common complication of 

surgery [3]. When POAF appears, many serious problems 

accompany it. Studies have shown that these dangers 

derive from a lack of metabolism necessary for cellular 
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life that in turn leads to cellular hypoxia [4]. Clinical 

complications, straight ahead, include an increased risk of 

ischemic stroke; worsening congestive heart failure; more 

time spent in intensive care units and infirmaries [5]. 

Despite its importance, current ways of finding out if 

someone has got fibrillation are lagging behind the need 

[6]. However, for the electrocardiogram (EKG), at 

present the skill of the operator is required [7]. With this 

paradigm, and five or even ten minutes of careful 

continuous monitoring--as might take place immediately 

before patients enter into an operating room which carries 

such an atmosphere filled with high risk factors--many 

episodes will be just plain overlooked owing to one's not 

realizing quick enough where trouble is lurking. Yet, it 

would appear that something like postoperative atrial 

fibrillation (POAF) can easily remain undetected when no 

overt clinical changes occur for a short period, creating a 

false sense of stability. Continuous vigilance is essential, 

as even brief lapses in monitoring may result in 

significant adverse patients outcomes. How can we face 

up to these problems, especially recognizing atrial 

fibrillation after long and difficult surgery, if we do not 

quickly find a way to regulate our timing?[8]. 

 

With innovations in electrocardiogram (ECG) 

interpretation over the past decade, such as artificial 

intelligence (AI) and deep learning, performance levels of 

recent models have already rivaled those from aperceived 

professional observer. These techniques employ 

annotated datasets of ECGs for detailed analyses, and 

depending on both the length of quantitative information 

and location in waveform, tibial flexion can help 

distinguish different arrhythmias [9]. It is different again 

from conventional machine-learning algorithms, which 

rely on manually extracted features of a physiological 

source for input. In this new approach, the details are 

enshrouded. Exactly how fresh results like these can be 

repeated in an artificial setting so different from our 

natural environment (perioperative in particular) is a 

problem which lies ahead [10]. If there's noise from the 

line, electrode interference, or electrical spikes in 

preoperative ECG signals, then that may result from many 

causes, including movement of the patient and the electric 

knife's interference in episodes of anesthetic anaesthesia 

which can be one more difficulty for those who are trying 

to keep up on a minute by minute basis[11]. 

Hemodynamic instability fluctuating electrolyte levels 

and the body's response to operative trauma make this 

kind of ECG morphology, which could result in 

misclassification by computers [12]. 

 

To meet this challenge, we should have a model that is 

both resilient to noise and intelligible for clinicians. Early 

attempts to use automation to arrest disturbances during 

operation have shown plausible specificity; their 

sensitivity, however, is not satisfactory––particularly for 

short or subclinical incidents of atrial fibrillations (AF) 

[13]. 

 

Moreover, the incorporation of AI systems into clinical 

practices demands interpretability, which could promote 

a more trusting relationship between the doctor and his 

electronic colleague [14]. Explainable AI (XAI) 

techniques like Grad-CAM and attention visualization 

provide means for understanding how models come to 

their decisions. This let doctors get insight into whether 

the algorithm is focusing on physiological features Norav 

that automatically acquire ECG recordings, illustrated by 

places such as the S S and A VV Explored [15]. 

 

In this paper, we propose the “Riafai” which is a 

Temporal Convolutional Transformer (TCT) network for 

real-time detection of post-operative atrial fibrillation 

(POAF) during open-heart surgery. This structure uses 

convolutional layers to restore local signal information 

and transformer encoders, akin to those employed in 

Google Neural Machine Translation, for accurate 

modeling of long-range dependencies in time. It 

combines the strengths of both methodologies. The TCT 

model is a “white box” in the sense that its workings are 

clearly accessible to curious doctors. Through the 

extraction of these interpretability mechanisms, the ECG 

outputs are related to sufferers who may feel their 

condition in person. The user focuses upon physiological 

features such as irregular R-R intervals and absence of P 

waves. The “Riafai” TCT model was trained on publicly 

available ECG data sets as well as on surgical case 

recordings [16] to make sure that its real-world operating 

conditions are well represented. 

 

ECG and non-ECG methodologies have been used in the 

diagnosis of postoperative atrial fibrillation (POAF), both 

achieving the same effect [17]. However, when described 

device subs are evaluated against an established gold 

standard in untreated patients within the same nursing 

environment, differentiations between ECG-based 

methods and alternative techniques become evident [18]. 
Accordingly, In the BIGPROMISE study, which 

prospectively followed 1,180 patients undergoing cardiac 

surgery (excluding those with a history of atrial 

fibrillation), postoperative atrial fibrillation (POAF) 

occurred in 35.3% of cases overall. Among patients who 

underwent isolated coronary artery bypass grafting 

(CABG), the incidence was slightly lower, at 29.8%, 

underscoring how common POAF remains even with 

modern perioperative care and continuous ECG 

surveillance [19]. Timely interventions for POAF pose 

challenges during the postoperative health care process. If 

not recognized promptly after surgery, POAF often leads 

to secondary difficulties. And now the need to use these 

monitoring systems for tracking incidence of POAF in 

this patient group is evident [8]. Previous studies have 

reported that nearly 40% of patients undergoing cardiac 

surgery under cardiopulmonary bypass develop 

postoperative atrial fibrillation, confirming that POAF 

remains one of the most common perioperative 

complications [20]. 

 

Limitations of Current Detection Approaches 
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The epidemiology of postoperative atrial fibrillation 

(POAF) has been thoroughly researched in the surgical 

setting; however, its transient, self-limited nature can 

pose major diagnostic and management challenges for 

anesthesiologists and clinical staff. Because episodes may 

resolve quickly and occur without overt symptoms, 

human observers with ordinary vigilance or concentration 

may fail to detect them reliably, unlike the world’s 

leading experts [21]. In view of this, late POAF episodes, 

which are often brief and self-terminating, can be missed 

by standard clinical monitoring methods. The use of 

continuous or advanced monitoring techniques, such as 

ILRs, can improve detection rates and help identify 

patients at higher risk for persistent arrhythmias [22]. 

Clinically, timely recognition of postoperative atrial 

fibrillation (POAF) is critical, as delayed diagnosis is 

associated with higher risk of late-occurring neurological 

complications, including stroke and transient ischemic 

attacks [3]. Thus, dependence solely on human 

observation is inadequate. Real-time, computerized 

detection methods are needed urgently. 

 

Artificial Intelligence in ECG Analysis 

AI has quickly transformed arrhythmia detection by 

enabling automated interpretation of ECGs at scales and 

granularity that were previously impractical [23]. Beyond 

rhythm classification, AI-ECG models have been trained 

to flag a wide range of cardiac and systemic conditions 

from routine tracings, expanding ECG utility well past 

what traditional human interpretation routinely reveals 

[24]. Seminal work has shown deep convolutional 

networks — and hybrid architectures combining 

convolutional and recurrent elements — can achieve 

cardiologist-level performance for multi-class rhythm 

classification (area under the ROC ≈0.97 and similarly 

high metrics in held-out test sets) [25]. Moreover, AI 

algorithms can detect subtle signatures such as atrial 

fibrillation present during apparent normal sinus rhythm, 

demonstrating that machine models capture temporal and 

morphological features often invisible to clinicians and 

suggesting strong potential for continuous, AI-assisted 

follow-up [26]. 

 

Challenges in Perioperative Implementation 

Despite positive results in extraoperative situations, the 

use of AI in the perioperative environment raises unique 

challenges. The electrocautery devices, patient movement 

and anesthetic medications all make for a lot of noise and 

artifacts on intraoperative ECGs [27]. Meanwhile, 

changes in waveform caused by things like perioperative 

hemodynamic unbuffered substances, unstable 

electrolytes or inflammatory response even more 

complicate algorithms based upon height and frequency 

[28]. To meet these challenges, we need models specially 

designed to confront noise and physiological variability 

head-on. However, without the matter of decent AI-

based, ECG systems of early days is a crucial drawback, 

they are all black boxes. Clinicians are usually unwilling 

to use models which lack in using gradient visualization 

or other methods of showing decision making 

implementable testers. This then helps integrate ECG 

systems into the running of on-ground surgery monitors, 

offering good compliance with authorities and a certain 

amount of insight for managers [29]. 

 

The Research Gap 

While the previous studies of automated arrhythmia 

detection in operating room settings achieved a certain 

measure of success they main tended to evidence poor 

sensitivity and good specificity, especially where only 

brief or subclinical AF episodes were concerned [30]. 

This problem is now screaming for solutions: 

 

Models that are able to combine temporal data and local 

information about the shape of ECG wave forms; Systems 

to guarantee that processing is done in real time, with low 

latency all along the timer chain; Architectures that have 

built in explanation capabilities which make it easier for 

non-specialist users (every man who wants to know about 

health) both to understand the system and also fabricate 

clinical interpretations-that can be used in line with 

current clinical practice. This gap provides a reason for 

our present research, to introduce a Temporal-

Convolutional Transformer (TCT) network aimed at 

operating room AF detection specifically. 

 

METHODS 

Study Design 

This was a retrospective secondary analysis of the data 

conducted on as part of the original research of integrating 

the standand ECG map with real-time intraoperative 

waveforms. The main aim was to develop and test a deep 

learning tool capable of identifying real-time asystole 

(atrial fibrillation following surgery). The study was 

designed with a minimum of bias and to ensure 

reproducibility according to recent recommendations for 

AI-based cardiac research by including details and 

transparency of processes [31]. 

 

Data Sources 

MIT-BIH Atrial Fibrillation Database 

The MIT-BIH Atrial Fibrillation Database (AFDB) from 

PhysioNet was used as the main source for all reference 

data [32]. This database contains twenty-five long-term 

ECG recordings (10 ≤ T D 25 h) from 23 patients 

diagnosed with atrial fibrillation. Every recording was 

taken from a sampling frequency of 250 Hz with twelve 

bits of resolution. Expert rhythm annotions serve as the 

true labels in the data set for Arima processes. 

 

Intraoperative ECG Recordings 

To account for perioperative variability, the AFDB was 

spiced up with over 300 hours of intraoperative single-

lead ECG signals, collected from anonymized surgical 

patients. These recordings contain real-world artifacts out 

of the operating room including the interference of 

electrocautery, patient movement and anesthesia induced 

waveform alterations causing private sectorization in 

phase change over time [33]. 
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Inclusion and Exclusion Criteria  
ECG segments depicting normal sinus rhythm (NSR), 

asystole (AF) with signal quality sufficient for analysis. 

Exclusion: Segments of ECG caused by excessive power 

line interference were removed from the data, for example 

incomplete annotations and mixed with rhythms other 

than atrial fibrillation. 

 

Preprocessing Pipeline 

A signal preprocessing pipeline was implemented to 

enhance the quality and standardize the input: 

 Band–pass filtering (0.5–40 Hz) was 

used to eliminate drift in the baseline and 

high–frequency noise. 

 Notch filtering (50/60 Hz) was employed 

to remove power line interference. 

 Normalization to obtain a zero mean and 

unit variance signal. 

 Segmentation over 30sec non-

overlapping windows (7500 samples per 

at 250 Hz in each segment). 

 

This pipeline conforms to established best practices for 

ECG preprocessing [34]. 

 

Data Splitting 

In order to shield against data leakage, data splitting was 

performed at the level of the patient: 

 Of patients: 70% Training set 

 In terms of patients: 15% Validation set 

 For patients: 15% Test set 

 

In this way, the strategy avoided having the same unit of 

measurement (patient) in all parts for one run and 

effectively preserved its external validity [35]. 

Model Architecture 

 

Temporal-Convolutional Transformer (TCT) 

Network 

To blend CNNs for local morphological character 

extraction with transformer encoders for long-term 

temporal character capturing, the proposed TCT 

architecture is as follows: 

 

Five 1-D convolutional layers (filters = 32, 64, 128, 256, 

512) are the backbone for the CN backbone. 

 

In the Transformer encoder, there are 4 self-attention 

heads with 256 dimensional embeddings. To stabilize 

training and avoid disappearing gradients, two residual 

connections have been put in place. At the same time, they 

are creating a certain amount of chaos (a.k.a. "noise") at 

their respective nodes before it enters Softmax output 

layer used for binary classification--still AF vs. NSR 

classification is done by only one output node (set up the 

way it is now)): 

 

Input and Output 

For input, a segment of 7500 samples corresponding with 

30 seconds' worth of ECG is given, and the output is the 

probabilities of AF vs. NSR. 

Training Procedure 

 AdamW (learning rate 1e-4) was used to 

optimize. 

 A weighted cross-entropy loss function 

was used for class imbalance. 

 Dropout (0.3) and L2 penalty (1e-5) were 

added to the regularizer. 

 The batch size was set at 32. 

 Early stopping was based on validation 

loss. After 15 epochs with no 

improvement in it, training was stopped. 

 

This methodology was drawn from the literature on early 

injury detection based on ECG's deep learning process 

[36]. 

 

Evaluation Metrics 

Evaluation included: 

 Main metrics: Accuracy, sensitivity, 

specificity and F1 score. 

 Secondary metrics: AUC-ROC, PR-

AUC and average time of detection. 

 Statistical analysis: 95% confidence 

intervals were computed using 

bootstrapping. 

These indicators are compatible with the existing models 

for arrhythmia detection [37]. 

 

Explanation and visualization 

In order to make the model understandable to a clinician, 

several methods were used: 

Grad-CAM heat maps were generated so that we could 

see which regions of the ECG were contributing to AF 

detection; Attention weights from transformer layers 

were visualized, putting special emphasis on their 

temporal dependencies; Use dimensionality reduction 

methods (PCA, t-SNE) to evaluate how features cluster 

together in space. These methods for creating 

transparency have been integrated in line with current 

suggestions for AI in clinical practice [38]. 

 

Ethical Considerations 
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All data used was publicly available and de-identified. 

AFDB's use conformed with PhysioNet licensing terms. 

Intraoperative ECG recordings were anonymized prior to 

analysis. In accordance with prevailing norms, this study 

was exempt from Institutional Review Board (IRB) 

approval [39]. 

 

RESULTS 

Overall Performance 

The proposed Temporal-Convolutional Transformer 

(TCT) network achieved good performance in detecting 

atrial fibrillation. The model obtained an accuracy of 

97.5%, sensitivity of 96.2%, specificity 98.1% on the 

held-out test set (Table 1). It had an F1-score of 0.981. 

These scores show that the model can generalize 

effectively across various patient groups. Table 

1Performance of the TCT model proposed herein on test  
 

Table 1. Performance of the proposed TCT model on the 

independent test set. 

Metric Value 

Accuracy 97.5% 

Sensitivity 96.2% 

Specificity 98.1% 

F1-score 0.981 

AUC-ROC 0.994 

AUC-PR 0.991 

 

Receiver Operating Characteristic (ROC) Curve 

The ROC curve for the test set (Figure 1) indicates that 

atrial fibrillation (AF) and Normal Sinus Rhythm (NSR) 

almost perfectly separate--as witnessed by its AUC-ROC 

of 0.994. It moves toward the point (0, 1) on upper left 

corner to zero false-positive rates and highest true-

positive rates. 

 

 

Figure.1 shows the ROC curve of the TCT network 

on test dataset. 

Precision–Recall (PR) Curve 

Given the uneven distribution of classes, a Precision–

Recall (PR) curve was computed (Figure 2). The TCT 

model obtained an AUC-PR of 0.991, meaning that even 

at very high thresholds for recall the model sustains low 

false alarm rates.  

 
 

Figure 2shows Precision–Recall (PR) curve, which 

illustrates the TCT network's capability to handle 

nonuniform class distributions. 

Confusion Matrix 

Figure.3 shows the confusion matrix for atrial fibrillation 

detection. The model misclassified just 40 of 2850 test 

segments: 18 false positives and 22 false negatives, hence 

an overall error rate of 1.4%. 

 
Figure 3. Normalized confusion matrix for atrial 

fibrillation detection. 

Training and Convergence: 
  Figure.4 shows the training loss curve and validation 

loss curve. After about 25 epochs, the loss dropped 

dramatically and remained stable. The validation 

accuracy was 97.6%, which was very close to the training 

accuracy of 98.9%. This indicates that the model is 

generalizing strongly 
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Figure 4: Real-time stability of convergence in 

training and validation loss. 
 

Feature Representation: 
learned by the TCT Network Using dimensionality 

reduction techniques to visualize its feature embeddings. 
PCA (Figure 5) The first two components explained 

68.3% of the variance, effectively separating AF from 

NSR. t-SNE (Figure 6) Non-linear embeddings showed 

two tight and separable clusters, affirming its power to 

learn discriminative features for classification tasks. 

 
Figure 5. Principal Component Analysis (PCA) of 

latent code representations. 

 
Figure 6. Each red dot corresponds to one point in 

latent feature space as visualized with t-SNE 

projection. 

Attention and Interpretability  

Figure 7 shows transformer attention weights and where 

the model focuses. For example, this is a close-up on a 

temporal part of the original signal. 

 
Figure 7. Trafo attention map for a particular 

temporal segment in the ECG signal. 

 
Figure 8. Grad-CAM visualizations showing model 

focus on irregular R-R intervals and absent P-waves. 

Heart Rate Distribution 

By contrast with the regular sinus rhythm shows at bottom 

in Figure 9. The heart rate distribution during episodes of 

AF showed a significantly greater spread than that for 

NSR (p < 0.001). This is still under a basic check to 

validate all graphs produced 

 

 
Figure 9. Heart rate distribution during AF vsNSR 

episodesinterrupt "2.9 
 

Detection Latency 
 average detection time per segment was 2.3 . 

Significance in Statistics: 

 Comparative analysis of the TCT network (McNemar’s 

test) was significantly better than traditional 
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convolutional neural network (CNN) benchmarks. 

Excellent was the agreement with cardiologist 

annotations had to be (Cohen’s κ = 0.95), supporting the 

clinical significance of this study’s results.  
 

Decision Threshold Analysis: 
To further enhance the classification performance, we 

carried out a decision threshold analysis (Fig. 10). What 

we found was that there is a clear trade-off reflected by 

this result between sensitivity, specificity and F1-score 

over different decisions cutoff points: at 0.In order to 

maintain the highest sensitivity, we selected a cut-off of 

threshold value 51%, with corresponding performance 

measures (Appendix Table 3) for this procedure--whether 

from 1993 or 2018. We therefore used this value in 

subsequent evaluations because it strikes a reasonable 

balance (≈ 0.90) False positives are kept to around 2%, 

while at the same time it is possible to minimize false 

negatives.;Therefore, this parameter point was utilized in 

later assessments to ensure a clinically meaningful 

outcome. 

 
Figure 10. At a trade-off between sensitivity, 

specificity, and F1-score among different thresholds 

for the TCT model analysis of decision 

thresholds.780What we call "the Golden Rule" is 

that the true positive rate plus false positive rate 

maxima when its value lies in front of each particular 

threshold. 

 

DISCUSSION 

Principal Findings 

Our study introduced a Temporal-Transformer 

Convolutional (TTC) network for real-time detection of 

postoperative atrial fibrillation (POAF), which uses 

single-lead ECG signals. This model had high accuracy 

(97.5%), high sensitivity(96.2%) and high specificity 

(98.1%), a low detection latency (at 2.3 seconds). 

Additionally, the model has been shown by ROC and PR 

Curves of Performance Measures to have very good 

discrimination capability (AUC-ROC = 0.994; AUC-PR 

= 0.991). Grad-CAM and attention visualizations 

confirmed, that this model focused on two key 

electrophysiological features: irregular R–R intervals and 

absent P-waves, which corespond to clinical 

observations. These results suggest that neither 

architecture is superior to the other. Both architecture not 

only achieves the performance of the current methods, but 

also preserves the interpretability, which is essential for 

clinical use. 

 

Comparison with Previous Research 

Our results are consistent with and extend previous work 

on automatic arrhythmia identification. Deep learning 

models applied to ambulatory ECGs have achieved 

accuracy comparable to cardiologists in their ability to 

classify arrhythmias [40,41]. However, most of these 

studies were confined to outpatients or research 

environments with more or less clean ECGs. In contrast, 

perioperative ECG signals frequently contain 

considerable noise arising from electrocautery, patient 

movement and anesthetic drugs [42]. The early attempts 

to adapt AI systems for perioperative monitoring were 

characterized by good specificity and poor sensitivity, 

especially for short-lived episodes of atrial fibrillation 

[43]. Combining convolutional layers for local feature 

extraction with transformer encoders for temporal context 

shaping, our TCT network circumvents these constraints 

and performs better than prior work in terms of sensitivity 

over all noisy intra-operative situations. 

 

Clinical Relevance 

The clinical importance of POAF has been well 

documented. In fact, it is associated with an increased 

occurrence of such problems as ischemic stroke, acute 

heart failure, and a poor prognosis [44]. The critical issue 

is that delayed or missed detection will pose key 

challenges: evidence shows that every minute taken to 

diagnose a stroke increases the corresponding 5% 

neurological risk [45]. The TCT system can work for the 

near real-time detection with high accuracy that has made 

it possible to: - Allow anesthesiologists to perform 

withdrawal monitoring at ever-tighter intervals - Support 

early intervention thereby reducing perioperative 

complications and improving post-operative outcomes - 

Achieve greater hospital efficiency through shorter 

periods in ICU care or hospital stays overall 5.4 

"Interpretability and Trustworthiness" 

 

To see more panels in this series please search for 

"CVWow" on YouTube or BiliBili In cardiology, 

artificial intelligence generally faces a significant hurdle: 

many models are black boxes. Yet doctors are unlikely to 

integrate algorithms into their practice that have no rhyme 

or reason behind their predictions [46]. This research 

addressed interpretability with Grad-CAM heatmaps and 

attention maps. Both of these techniques showed that the 

model prioritized physiologically meaningful features. 

Such a model is consistent with the wider call for 

'explainable AI(XAI)' created by healthcare. It is an 

urgent reminder that all AI systems designed for medical 

uses need to be open and transparent before they will gain 

trust from users [47]. 5.5 Methodological Contributions 

This study boasts a number of methodological strengths: 

- Hybrid architecture -- By integrating CNN and 

transformer components, we were able to simultaneously 

capture local morphology and long-range temporal 
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dynamics. - Patient-level data splitting -- This strategy 

alleviated data leakage and helped make it more likely 

that our results would apply across patients not seen 

previously. - Realistic training data -- We trained the AI 

on intraoperative ECG recordings to increase robustness 

against surgical artifacts. - Low latency -- The system has 

a detection delay of only 2.3 seconds, which makes it 

suitable for real-time application. 5.6 "Limitations" 

 

Despite encouraging results in his study, several 

limitations must be considered: - Dataset limitations 

Although the MIT-BIH AF database has been widely 

verified and corroborated by other authorities, it is only a 

small group of patients who have been studied. 

Intraoperative data, even though extensive, comes from 

just one center. 

 

Current studies limited their models mainly to AF and 

NSR, spotlighting only these two possibilities. Schiller 

[40] But in reality there are still others--and putting atrial 

flutter, ventricular tachycardia outside of what a model 

considers "arrhythmia" could easily lead to dangerous 

error perception. 

 

One -lead study: Using Lead II only may obscure an 

occurrence that could be caught if all 12 leads were 

analyzed. 

 

With regards to computational cost, transformer-based 

models have a greater simulation time than pure CNN 

setups has. 

 

Future Directions 

 Further directions for research include: 

 Multicentric validation in diverse surgical 

populations to make the results more 

generalizable. 

 Extension of the kinds of ECG analyses to 

include multiple leads. 

 Prospective studies to gauge how well this 

system works in hospitals and actual clinical 

situations 

 Making the ECG printer part of one's bedside 

system or even into an appendix for 

telemedicine terminals 

 Open-coding multiple classes of arrhythmias. 

This opens the way for smart rhythm monitoring 

in surgery. The application for this is quite 

broad, and there are several other potential areas 

which need the same thing. 

 

Theoretical and Practical Implications 

From a theoretical point of view, this paper displays the 

effectiveness of hybrid temporal convoluted transformers 

on bio time series data. But from a practical view, it shows 

how interpretible AI tools may fill in gaps between 

algorithmic conceptions and their application in actual 

clinical trail. Resulting works are consistent with current 

trends in putting AI -based decision assist systems into 

vital places : the operative suite [48]. 

 

CONCLUSION 

This study introduces a Temporal-Convolutional 

Transformer (TCT) network for real time detection of 

perioperative atrial fibrillation (POAF) from single-lead 

ECG signals. We designed this model to Pixel 3XL so its 

runtime is under 2ms and the accuracy rate was increased 

to 97.5%. The sensitivity of the model was 96.2%, the 

specificity 98.1% and its detection latency only 2.3 

seconds. Such outstanding statistics gave rise pride in 

everyone who contributed to its development. And 

instead of purely numerical measurements, the TCT 

Network was more. Grad-CAM and attention 

visualizations revealed a whole lot about the 

electrophysiological function hidden behind this peculiar 

sort of semi-pathologic pulse. Such vital signal 

abnormalities as pear-shaped R waves and P-T segments 

that are too short can all be clearly seen. 

 

The results of the study suggest that its algorithm could 

open the door to even wider applications. This model will 

not only improve the limitations of today's perioperative 

monitoring but also could offer automated, reliable and 

explainable diagnostics for episodes of AF in that difficult 

operating room environment. Importantly, our system 

was characterized by a combination of high sensitivity 

(early warning) and low false alarm rate (specificity). In 

real-time surgical workflows, that is a crucial balance. 

 

However, the study is hampered by its reliance on single-

lead analysis, binary classification strategy, and recording 

of intraoperative data in a single center. Future research 

should be double-blind randomized study, multiple-dose 

per day oral amiodarone vs. placebo control on the basis 

of these same indicators – not just respectable percentages 

but changing whichever term seems most appropriate to 

accommodate what's going on. Data in Phase III clinical 

trials must be designed with validity and applicability in 

mind. Including multi-center validation, multi-lead ECG 

integration, as well as prospective clinical trials for real 

world feedback and adjustment of performance measures 

are now necessary as the next steps after deep learning has 

given us a promising new tool that still needs verifying. 

 

In the end, the TCT Network demonstrates a major 

breakthrough in AI-aided perioperative monitoring 

systems that's both powerful in performance indicators 

and easy for people to understand. The innovations lie 

within its dual use as an operating room learning system 

for ICU wards as well. Perhaps future work might look at 

whether such application could reduce early warnings, 

surgical complications or favor improvements in survival 

rates (see below). 

 

Abbreviations 

 AF: Atrial fibrillations. 
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 AFDB: Fibrillation database. 

 Grad-CAM: Gradient-weighted Class Activation 

Mapping. 

 NSR: Normal Sinus Rhythm.  

 POAF: Postoperative atrial fibrillation. 

 PR:  Precision–Recall. 

 ROC: Receiver Operating Characteristic. 

 TCT: Temporal Convolutional Transformer. 
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