Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online) www.jrcd.eu JOURNAL OF RARE CARDIOVASCULAR DISEASEI

RESEARCH ARTICLE

Synthesis, and Biological Evaluation of Chalcone Scaffolds as Anti-Bacterial and Anti-oxidant

Muskan*1, Smriti Gohri*2, Dr. Milind Sharad Pande*3

¹Research Scholar, IIMT College of Medical Sciences, Ganganagar, Meerut U.P.

*Corresponding Author Muskan, Smriti Gohri, Dr. Milind Sharad Pande

Article History

Received: 24.09.2025 Revised: 09.10.2025 Accepted: 21.10.2025 Published: 06.11.2025 Abstract: Chalcones, open-chain flavonoids with an α , β -unsaturated carbonyl system, are widely recognized for diverse biological activities, including antimicrobial and antioxidant effects. In the present study, ten chalcone derivatives (C1-C10) were synthesized using Claisen-Schmidt condensation and characterized by melting point, yield, and recrystallization profiles. Their antimicrobial activity was evaluated against Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli using the broth microdilution method, while antioxidant potential was determined by the DPPH radical scavenging assay. The antimicrobial results indicated that chalcones bearing electron-withdrawing substituents (-Cl, -Br, -CN, -NO2) exhibited enhanced antibacterial effects. In contrast, derivatives with electron-donating groups (-OH, -OCH₃) displayed stronger antioxidant activity, as, C1, which demonstrated low IC50 values compared with the standard ascorbic acid. These findings establish a clear structure-activity relationship (SAR), suggesting that chalcones with electron-withdrawing groups are promising antibacterial agents, whereas those with electron-donating groups serve as potent antioxidants. Overall, the synthesized chalcone derivatives highlight the potential of structural modification in improving therapeutic efficacy and may serve as lead scaffolds for the development of novel antimicrobial and antioxidant agents.

Keywords: Chalcone derivatives; Claisen–Schmidt condensation; Antimicrobial activity; Antioxidant activity; Structure–activity relationship (SAR).

INTRODUCTION

1. Background of Chalcones

Chalcones represent an important group of organic molecules classified under the flavonoid family 1 . Structurally, they are open-chain precursors to flavonoids and isoflavonoids, characterized by an α , β -unsaturated carbonyl system connecting two aromatic rings $^{(Fig.1.1)}$. This unique framework makes chalcones highly reactive and versatile in medicinal chemistry. They are commonly found in various plants, including fruits, spices, vegetables, and medicinal herbs, where they play an essential role in plant defence mechanisms $^{2-4}$. Chalcone shows a broad range of pharmacological actions, including antimicrobial, anti-inflammatory, antioxidant, anticancer, and anti-diabetic effects $^{2-3}$. The ability of chalcones to interact with biological targets, such as enzymes and cellular receptors, makes them promising candidates for drug development. The presence of conjugated double bonds and a reactive carbonyl group in chalcones allows for modifications that can enhance their bioactivity 4 . Due to the rising resistance of pathogens to standard antibiotics and the escalating effects of oxidative stress on human health, chalcones are emerging as promising candidates for the development of new therapeutic agents 5 .

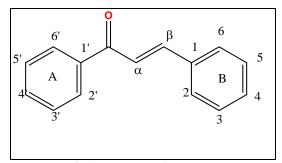


Fig 1. Structure of Chalcone

2. Methods of Synthesis of Chalcones:

The synthesis of chalcones has garnered significant attention in organic and medicinal chemistry due to their diverse biological activities and structural versatility. Over the years, numerous synthetic methods have been developed and refined to produce chalcones efficiently and sustainably ⁹⁻¹⁰. These approaches vary in complexity, reaction conditions, and yields, allowing for the generation of a wide range of chalcone derivatives. The continuous advancement in synthetic

²Assistant Professor, IIMT College of Medical Sciences, Ganganagar, Meerut U.P.

³Dean, IIMT College of Medical Sciences, IIMT University, Ganganagar, Meerut U.P.

strategies reflects the growing demand for chalcones in pharmaceutical and chemical research, emphasizing their importance as key scaffolds in drug development and other industrial applications. Here are some commonly used synthesis methods for Chalcones can be synthesized using various methods that allow for precise structural modifications ⁹⁻¹⁰. The most commonly used methods include:

2.1 Claisen-Schmidt condensation:

The Claisen-Schmidt condensation is the most widely employed method for chalcone synthesis. It involves the reaction of an aromatic aldehyde with an aromatic ketone in the presence of bases (such as sodium, potassium or lithium hydroxide) or an acid catalyst (involves hydrochloric acid, sulfuric acid, or p-toluene (sulfonic acid). This reaction results in the formation of an α , β -unsaturated carbonyl system⁹⁻¹¹. The reaction is typically carried out in a polar solvent like ethanol, methanol, or aqueous media to enhance solubility and reaction efficiency. The process generally follows an aldol condensation mechanism, where the enolate ion of the ketone attacks the carbonyl carbon of the aldehyde, forming a β -hydroxy ketone intermediate, which then undergoes dehydration to yield the final chalcone product. This method provides high yields, operational simplicity, and versatility in synthesizing diverse chalcone derivatives ¹¹.

Scheme 1 Chalcone Synthesis by Claisen- Schmidt condensation

2.2 Suzuki coupling reaction: The reaction has been widely used to develop chalcones. The reaction is effective whether the reactant carry electron accepting or electron-releasing substituents, show that the electronic characteristics of the substituted group attached to the benzene rings exerts negligible influence on the reaction outcome ¹⁵.

Scheme 2. Chalcone synthesis by Suzuki Coupling Reaction


2.3 Biosynthesis

The process of biosynthesis Chalcone synthase, A common enzyme in higher plants is CHS, the first type I1 polyketide synthase (PKS) superfamily identified in the 1970s. A number of lesser plants, like the liverwort Marchantia polymorpha, have also been found to have CHS. The remaining members of this family are all classified as "CHS-like" enzymes. The biosynthesis of various chalcones is carried out by CHS¹². The biosynthesis of a variety of secondary metabolites, such as flavonoids, stilbenes, and aurones, is linked to the CHS super family enzymes ¹²⁻¹³. By crystallizing CHS from the legume Medicago sativa, Joseph P. Noel and colleagues created a crucial framework for the biosynthetic mechanism and revealed crucial structural details regarding chalcone production. CHS is a homodimer, with each monomer having a mass of about 42–45 kDa.81 Cys164. The essential active site residues, Cys164, Phe215, His303, and Asn336 have been conserved in all CHS members and CHS-like enzymes. The initial step in the production of chalcones by CHS_ is the transfer of the coumaroyl moiety from one 4coumaroyl-coenzyme A (CoA) to Cys164. Three malonyl-CoA thioesters then undergo a polyketide reaction to create an intermediate (Scheme 1.2). A regiospecific Claisen-type cyclization takes place following the formation of a thioester-linked tetrapeptide, creating a novel ring system that yields naringenin chalcone. Scheme 1. When chalcone reductase (CHR) and CHS are present, naringenin chalcone is changed into 6-deoxy-naringenin chalcone (is liquiritigenin, Table 1,). Using the appropriate catalytic enzymes, other plant secondary metabolites, including stilbenes,

phloroglucinols, resorcinol, and benzophenones, might be biosynthesised similarly. Naringenin Chalcones are used as the substrates by CHS and chalcone isomerase (CHI) to produce flavonoids and isoflavonoids. Naringenin chalcones are also serves as the building blocks for the biosynthesis of aurone compounds by a plant catechol oxidase, aurone synthase (AURS). These conversions from chalcones to flavanones or aurones could also be realized by chemical reactions, such as the Algar–Flynn–Oyamada reaction ¹²⁻¹³.

Chalcones serving as precursors have generated a range of plant metabolites, revealing interesting biological activities, which will be discussed in the following sections. Taking such experience from nature, simple chalcones have been synthetically hybridized with other templates, such as stilbenes.

Scheme 3 Biosynthetic process of chalcone synthesis

3. Antimicrobial Potential of Chalcones

The rising prevalence of antibiotic-resistant bacteria and fungi has built an urgent necessity for new antimicrobial agents. Chalcones have shown promising antibacterial and antifungal activity through different mechanisms:

- Disruption of Cell Membranes: Chalcones are capable of interacting with microbial cell membranes disruption, resulting in increased permeability and subsequent cell rupture.
- Inhibition of Essential Enzymes: They interfere with bacterial and fungal enzymes crucial for survival, such as DNA gyrase, topoisomerase, and β-lactamase.
- Efflux Pump Inhibition: Some chalcones prevent bacteria from expelling antibiotics, thereby enhancing the effectiveness of existing drugs.
- Inhibition of Biofilm Formation: Chalcones interfere with quorum sensing mechanisms, reducing the ability of bacteria to form protective biofilms, making them more susceptible to antibiotics ²⁵⁻²⁶.

4. Antioxidant Potential of Chalcones:

Oxidative stress due to an imbalance between reactive generation of reactive species (ROS) and the body's antioxidant defence. Chalcones have shown potent antioxidant activity through:

- Scavenging Free Radicals: Neutralizing ROS to prevent cellular damage.
- Inhibiting Lipid Peroxidation: Protecting cell membranes from oxidative degradation
- Chelating Metal Ions: Reducing metal-catalysed oxidative reactions ²⁷⁻²⁸.

These properties make chalcones potential candidates for treating diseases linked to oxidative damage, including neurodegenerative diseases, cardiovascular disorders, and various forms of cancer.

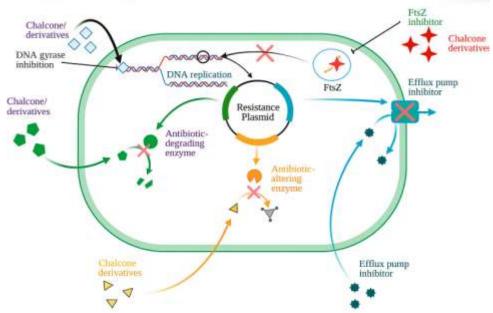


Fig 2. MOA of Chalcone as anti-microbials

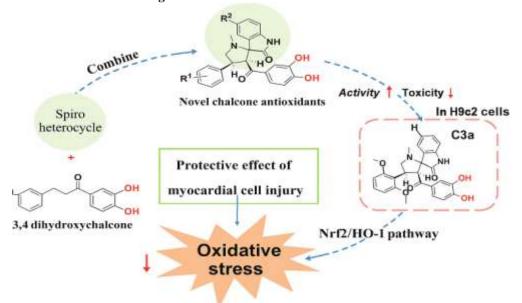


Fig 3. MOA of Chalcones as anti-oxidants

MATERIALS AND METHODS

5.2 Synthesis of Chalcone Derivatives (C1-C10) 5.2.1 Synthesis of (E)-1-(2,4-dihydroxyphenyl)-3-(4-chlorophenyl) prop-2-en-1-one (C1)

A mixture of each 2,4-dihydroxyacetophenone (0.01 mol) and 4-chlorobenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20–25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred for 4–5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water.

The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.2 Synthesis of (E)-1-(3,4,5-trimethoxyphenyl)-3-(4-nitrophenyl) prop-2-en-1-one (C2)

A mixture of each 3,4,5-trimethoxyacetophenone (0.01 mol) and 4-nitrobenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20–25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4–5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute

hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.3 Synthesis of (E)-1-(4-methylphenyl)-3-(2-thienyl) prop-2-en-1-one (C3)

A mixture of each 4-methylacetophenone (0.01 mol) and 2-thiophenecarboxaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20-25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25-30°C). The solution was stirred continuously for 4-5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.4 Synthesis of (E)-1-(2-pyridyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (C4)

A mixture of each 2-acetylpyridine (0.01 mol) and 4-hydroxybenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20–25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4–5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.5 Synthesis of (E)-1-(2,3-dimethoxyphenyl)-3-(4-fluorophenyl) prop-2-en-1-one (C5)

A mixture of each 2,3-dimethoxyacetophenone (0.01 mol) and 4-fluorobenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20–25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4–5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and

recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.6 Synthesis of (E)-1-(4-nitrophenyl)-3-(4methoxyphenyl) prop-2-en-1-one (C6) mixture of each 4-cyanoacetophenone (0.01 mol) and 4-methoxybenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20-25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4-5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.7 Synthesis of (E)-1-(4-aminophenyl)-3-(3,4-dimethoxyphenyl) prop-2-en-1-one (C7)

A mixture of each 4-aminoacetophenone (0.01 mol) and 3,4-dimethoxybenzaldehyde (0.01 mol) were dissolved in 20–25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4–5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.8 Synthesis of (E)-1-(naphthalen-2-yl)-3-(4-methoxyphenyl) prop-2-en-1-one (C8)

A mixture of each 2-acetylnaphthalene (0.01 mol) and 4-methoxybenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20-25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25–30°C). The solution was stirred continuously for 4-5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.9 Synthesis of (E)-1-(3,5-dibromophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (C9)

A mixture of each 3,5-dibromoacetophenone (0.01 mol) and 4-hydroxybenzaldehyde (0.01 mol) was taken in a round bottom flask and dissolved in 20-25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25-30°C). The solution was stirred continuously for 4-5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, the solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

5.2.10 Synthesis of (E)-1-(4-sulfamoylphenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (C10)

A mixture of each 4-sulfamoylbenzaldehyde (0.01 mol) and 4-hydroxyacetophenone (0.01 mol) was taken in a round bottom flask and dissolved in 20-25 mL of absolute ethanol. The reaction mixture was stirred magnetically, and 10 mL of 10% aqueous sodium hydroxide solution was added dropwise at room temperature (25-30°C). The solution was stirred continuously for 4-5 hours. A precipitate gradually formed as the condensation progressed. To achieve pH ~6, upon completion, solution was neutralized using dilute hydrochloric acid. After which the resulting solid was isolated via filtration, rinsed with cold water. The crude compound was then dried and recrystallized from ethanol to obtain the respective chalcone derivative.

 $\mathcal{D}\mathsf{CH}^3$

C8

RESULTS AND OBSERVATIONS:

OCH₃

 OCH_3

Br C9 OH
$$H_2N$$
 C10

Fig 5. Structures of Synthesized Chalcone derivatives

Table 2: Physical Characterization Data of Chalcone Derivatives (C1–C10)

Compound	Substituents (Ar1 -	Molecular	Melting Point	Yield (%)	Color
Compound	Ar2)	Formula	(°C)	11010 (70)	00101
C1	2,4-dihydroxy - 4-	$C_{15}H_{11}ClO_3$	182-185	85	Yellow
	chlorophenyl				
C2	3,4,5-trimethoxy - 4-	$C_{16}H_{15}NO_5$	168-170	82	Light Yellow
	nitrophenyl				
C3	4-methyl - 2-thienyl	$C_{14}H_{12}OS$	125–127	80	Orange
C4	2-pyridyl - 4-	$C_{14}H_{11}NO_2$	176–178	79	Pale Yellow
	hydroxyphenyl				
C5	2,3-dimethoxy - 4-	$C_{16}H_{13}FO_3$	160-163	83	Light Orange
	fluorophenyl				
C6	4-cyano - 4-	$C_{16}H_{11}NO_2$	189–191	86	Yellow
	methoxyphenyl				
C7	4-amino - 3,4-	$C_{16}H_{15}NO_3$	162–165	88	Bright Yellow
	dimethoxyphenyl				
C8	naphthalen-2-yl - 4-	$C_{18}H_{14}O_2$	192–195	84	Golden
	methoxyphenyl				Yellow
C9	3,5-dibromo - 4-	$C_{15}H_{10}Br_2O_2$	198–201	78	Deep Yellow
	hydroxyphenyl				
C10	4-sulfamoyl - 4-	$C_{15}H_{13}NO_4S$	214–217	81	Yellowish
	hydroxyphenyl				Brown

5.3 Evaluation of Biological Activities

5.3.1 Anti-Bacterial Screening Method:

The antibacterial screening was performed against the microbial strains are Streptococcus pyogenes (MTCC 443), Staphylococcus aureus (MTCC 96), Pseudomonas aeruginosa (MTCC 2488), Escherichia coli (MTCC 442). P. aeruginosa, E. coli (Gram-negative bacteria) and S. pyogenes, S. aureus (Gram-positive bacteria) was screened for antibacterial effect. Mueller-Hinton broth and Saburou's broth were served as nutritional media for both gram-positive and gram-negative bacteria, respectively. Ampicillin served as standard for antibacterial activity.

The broth microdilution method (Monga et al., 2014; Balouiri et al., 2016) was employed for antibacterial susceptibility testing. DMSO was used to prepare dilutions of test compounds. To evaluate the antibacterial activity of the chalcones (compounds C-1 to C-10), we used the Minimum Inhibitory Concentration (MIC) method. MIC is the lowest concentration of a compound that completely prevents the growth of bacteria after overnight incubation. It's a widely used technique to test how effective a compound is against bacterial strains. Common ways to determine MIC include tube dilution and agar dilution methods.

The Minimum Inhibitory Concentration (MIC) of control drugs was calculated for validation. Growth patterns in subcultures indicated bacteriostatic (similar colony counts), partial bactericidal (reduced colonies), or bactericidal effects (no growth).

5.3.2 Anti-oxidant Activity

The antioxidant efficacy of the synthesized chalcone derivatives was assessed using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging method, based on the protocols reported by Lahsasni et al. (2014) and Dhiman et al. (2015).

DPPH is a stable free radical that exhibits a deep purple color and can be reduced by donating hydrogen atoms or electrons from antioxidant compounds. This reaction leads to a color shift from purple to yellow, accompanied by a decrease in absorbance at 517 nm, which reflects the compound's radical scavenging capacity.

5.3.2.1 Experimental Method

- A stock solution was prepared by dissolving 50 mg of each chalcone derivative in 50 mL of methanol to obtain a concentration of 1000 μg/mL.
- From this, a 1 mL aliquot was diluted to 100 μ g/mL and then serially diluted to create test concentrations of 2, 4, 8, 16, 32, and 64 μ g/mL.
- Each concentration was mixed with 200 μL of DPPH solution (7.86 mg in 100 mL methanol).
- DPPH solution with methanol (without sample) was used as the control, and methanol alone was used as the blank.
- The mixtures were incubated in the dark at 25°C for 30 minutes.
- Absorbance was measured at 517 nm using a UV-Visible spectrophotometer.
- All measurements were conducted in triplicate to ensure reliability.

6.1 Antibacterial Activity

The antibacterial activity was determined using the broth microdilution method against Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The MIC values ($\mu g/mL$) of chalcone derivatives C1–C10 were compared to the standard drugs ampicillin (for bacteria).

Table 3. Minimum Inhibitory Concentration (MIC) in μg/mL of Streptococcus pyogenes (MTCC 443), Staphylococcus aureus (MTCC 96), Pseudomonas aeruginosa (MTCC 2488) and Escherichia coli (MTCC 442)

Compound	S. pyogenes	S. aureus	P. aeruginosa	E. coli
C1	50	125	125	100
C2	75	250	150	125
C3	100	125	200	200
C4	60	65	100	110
C5	80	70	130	115
C6	50	100	200	180
C7	90	85	150	100
C8	70	75	110	105
C9	55	125	125	95
C10	65	70	140	90
Ampicillin	25	125	100	125

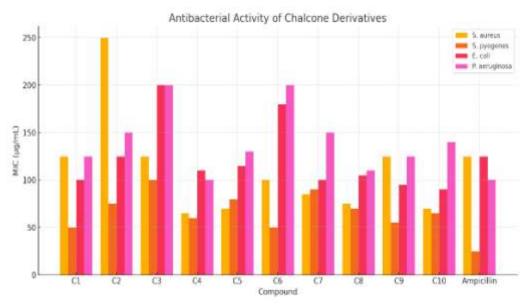


Fig 6. Anti-bacterial activity of Chalcones (C1-C10)

Antibacterial activity results revealed that compound C4 and C8 show the lowest MIC values across most strains, indicating strong broad-spectrum antibacterial potential – C1, C5, C7, C9, and C10 display intermediate MIC values; their activity varies depending on the bacterial strain, showing some degree of selectivity. C2, C3 and C6 have the highest MIC values for several strains, indicating weaker antibacterial effects.

No single derivative is universally dominant against all four strains, suggesting that structural features influence strainspecific activity.

6.2 Antioxidant Activity

Antioxidant activity was assessed using the DPPH radical scavenging assay. The IC₅₀ values were calculated and compared with standard L-ascorbic acid. Lower IC₅₀ values indicate higher antioxidant activity.

Table 4: IC₅₀ values (µg/mL) of chalcone derivative

Compound	IC50 (μg/mL)	Remarks
C1	18.5	Strong antioxidant due to 2,4-OH
C2	20.0	High activity from 3,4,5-OCH3
C3	35.2	Moderate scavenging due to methyl
C4	25.6	OH and pyridine contribute well
C5	22.4	Dimethoxy enhances hydrogen donation
C6	30.0	CN group reduces activity slightly
C7	23.8	Amino and OCH3 groups beneficial
C8	27.5	Naphthyl stabilizes radical species
C9	19.2	Br and OH highly effective
C10	21.3	Sulfamoyl and OH synergize

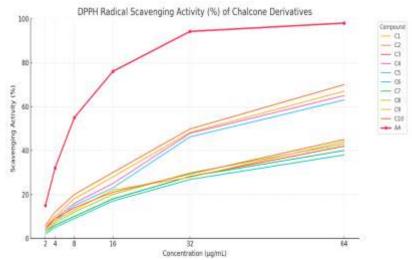
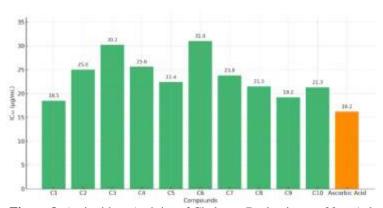



Figure 7. DPPH Radial Scavenging Activity (%) of Chalcones Derivatives

Figure 8. Antioxidant Activity of Chalcone Derivatives at 32 μg/ml.

To quantitatively compare the potency of each derivative, IC₅₀ values were calculated — the concentration required to inhibit 50% of the DPPH radicals. The IC₅₀ data revealed that:

C1 had the lowest ICso (18.5 μ g/mL) among the chalcones, indicating strong antioxidant efficacy, likely due to the presence of hydroxyl groups that enhance electron donation.

C8, C9 and C10 followed closely (IC50 = 19.2, 21.3 and 21.5 μ g/mL respectively), which may be attributed to methoxy and electron-donating substituents enhancing radical quenching.

C3 and C6 exhibited high IC50 values (30.2 and 31.0 $\mu g/mL$), suggesting poor activity. This may result from electron-withdrawing groups like bromine or sulfonamide, which do not favor radical stabilization.

DISCUSSION

In compounds C2, C6, and C9, the presence of strong electron-withdrawing groups (EWGs) like –NO₂, –CN, and –Br on the aromatic ring significantly enhanced antibacterial activity against S. aureus, S. pyogenes, and E. coli. These groups may facilitate better interaction with bacterial enzymes and increase membrane permeability.

- ❖ In compounds C1, C4, and C10, the presence of OH groups at ortho or para positions contributed notably to both antioxidant and antibacterial activity. The hydroxyl groups are effective hydrogen donors, thus improving radical scavenging ability.
- ❖ Compound C2, with a 3,4,5-trimethoxyphenyl substitution, showed superior antioxidant activity, indicating that multiple methoxy groups at electron-rich positions favor radical stabilization and enhance activity.
- ❖ Compounds like C5 and C7, bearing combinations of −F, −OCH₃, and −NH₂, demonstrated moderate dual activity. These mixed substitutions provided a balanced influence on both electron donation and interaction with biomolecular targets.
- ❖ The presence of a dimethoxy group in C5 (2,3-positions) improved antioxidant activity due to delocalization of electrons, whereas its impact on antibacterial potency was moderate.
- ❖ Compound C9, with dibromo substitution, showed strong antibacterial and antioxidant effects, confirming the benefit of halogenation in microbial inhibition and electron transfer capacity.
- ❖ Compound C10, containing a sulfamoyl group (− SO₂NH₂) and a para −OH on the second aromatic ring, showed significant broad-spectrum antibacterial activity and high antioxidant capacity, likely due to synergistic electronic and hydrogen-bonding effects.
- ♦ Overall, derivatives with electron-donating groups (EDGs) like –OH, –OCH₃, and –NH₂ exhibited stronger antioxidant potential, while EWGs like –NO₂, –CN, and –halogens improved antibacterial activity, especially when positioned para to the enone system.

CONCLUSION

The present study successfully synthesized and evaluated ten chalcone derivatives for their

antimicrobial and antioxidant potential. The results clearly demonstrate that substitution patterns strongly

influence biological activity, with electron-withdrawing groups enhancing antibacterial effects and electrondonating groups improving antioxidant properties. Among the tested derivatives, C4 emerged as a potent antibacterial agent, while C2 and C1 showed the antioxidant effects. These emphasize the importance of rational design and structural tailoring of chalcones to optimize their pharmacological potential. Overall, derivatives represent a versatile scaffold for the development of novel therapeutic agents to address challenges such as antibiotic resistance and oxidative stress-related disorders.

REFERENCES

- 1. Alam, M. S.; Rahman, S. M.; Lee, D.-U. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents. Chemical Papers. 2015, 69 (8), 1118–1129.
- Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. European journal of medicinal chemistry. 2014, 85, 758–777.
- Wadleigh, R. W.; Yu, S. J. Glutathione transferase activity of fall armyworm larvae toward α, βunsaturated carbonyl allelochemicals and its induction by allelochemicals. Insect Biochemistry. 1987, 17 (5), 759–764.
- 4. Karthikeyan, C.; Narayana Moorthy, N. S.H.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent patents on anti-cancer drug discovery. 2014, 10 (1), 97–115.
- Dhar, K.; Saxena, A.; Kumar, S; Sapra, S; Sweety; Nepali, K; Suri, O.; Sarma, G. Synthesis and biological evaluation of chalcones having heterosubstituent (s). Indian journal of pharmaceutical sciences. 2010, 72 (6), 801.
- Ninomiya, M.; Koketsu, M. In Natural Products Ranawat, K. G., Ed.; Springer Verlag: Berlin, 2013.
- Okolo, E. N.; Ugwu, D. I.; Ezema, B. E.; Ndefo, J. C.; Eze, F. U.; Ezema, C. G.; Ezugwu, J. A.; Ujam, O. T. New chalcone derivatives as potential antimicrobial and antioxidant agent. Scientific Reports. 2021, 11, 21871.
- 8. Henry, E. J.; Bird, S. J.; Gowland, P.; Collins, M.; Cassella, J. P. Ferrocenyl chalcone derivatives as possible antimicrobial agents. Journal of antibiotics. 2020, 73 (5), 299–308.

- Benouda, H.; Bouchal, B.; Challioui, A.; Oulmidi, A.; Harit, T.; Malek, F.; Riahi, A.; Bellaoui, M.; Bouammali, B. Synthesis of a series of chalcones and related flavones and evaluation of their antibacterial and antifungal activities. Letters in Drug Design & Discovery. 2018, 16 (1), 93–100.
- Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorganic chemistry. 2019, 87, 335–365.
- Nurkenov, O.; Ibraev, M.; Schepetkin, I.; Khlebnikov, A.; Seilkhanov, T.; Arinova, A.; Isabaeva, M. Synthesis, structure, and antiinflammatory activity of functionally substituted chalcones and their derivatives. Russian Journal of General Chemistry. 2019, 89 (7), 1360–1367.
- 12. Ibrahim, T. S.; Moustafa, A. H.; Almalki, A. J.; Allam, R. M.; Althagafi, A.; Md, S.; Mohamed, M. F. Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: design, synthesis, molecular docking studies and ADMET prediction. Journal of enzyme inhibition and medicinal chemistry. 2021, 36 (1), 1067–1078
- Lakshminarayanan, B.; Kannappan, N.; Subburaju, T. Synthesis and biological evaluation of novel chalcones with methanesulfonyl end as potent analgesic and anti-inflammatory agents. Int. J. Pharmaceutical Res. Biosci. 2020, 11 (10), 4974–4981.
- 14. Higgs, J.; Wasowski, C.; Marcos, A.; Jukic, M.; Paván, C. H.; Gobec, S.; de Tezanos Pinto, F.; Colettis, N.; Marder, M. Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their antianxiety, anti-depression and analgesic effects. Heliyon. 2019, 5 (3), e01376.
- 15. Murtaza, S.; Mir, K. Z.; Tatheer, A.; Ullah, R. S. Synthesis and evaluation of chalcone and its derivatives as potential anticholinergic agents. Letters in Drug Design & Discovery. 2019, 16 (3), 322–332.
- Fakhrudin, N.; Pertiwi, K. K.; Takubessi, M. I.; Susiani, E. F.; Nurrochmad, A.; Widyarini, S.; Sudarmanto, A.; Nugroho, A. A.; Wahyuono, S. A geranylated chalcone with antiplatelet activity from the leaves of breadfruit (Artocarpus altilis). Pharmacia 2020, 67, 173.
- 17. Choudhary, A. N.; Kumar, A.; Juy, V. Design, synthesis and evaluation of chalcone derivatives as anti-inflammatory, antioxidant and antiulcer agents. Letters in Drug Design & Discovery. 2012, 9 (5), 479–488.
- Bale, A. T.; Salar, U.; Khan, K. M.; Chigurupati, S.; Fasina, T.; Ali, F.; Ali, M.; Nanda, S. S.; Taha, M.; Perveen, S. Chalcones and BisChalcones Analogs as DPPH and ABTS Radical Scavengers.

- Letters in Drug Design & Discovery. 2021, 18 (3), 249–257.
- Al Zahrani, N. A.; El-Shishtawy, R. M.; Elaasser, M. M.; Asiri, A. M. Synthesis of novel chalconebased phenothiazine derivatives as antioxidant and anticancer agents. Molecules. 2020, 25 (19), 4566.
- Qin, H.-L.; Zhang, Z.-W.; Lekkala, R.; Alsulami, H.; Rakesh, K. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: a key review. European journal of medicinal chemistry 2020, 193, 112215.
- 21. Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: role in anticancer therapy. Biomolecules. 2021, 11 (6), 894.
- Č izmáriková, M.; Takác, P.; Spengler, G.; Kincses, A.; Nové, M.; Vilková, M.; Mojziš J. New chalcone derivative inhibits ABCB1 in multidrug resistant T-cell lymphoma and colon adenocarcinoma cells. Anticancer Res. 2019, 39 (12), 6499–6505.
- Fu, Y.; Liu, D.; Zeng, H.; Ren, X.; Song, B.; Hu, D.; Gan, X. New chalcone derivatives: Synthesis, antiviral activity and mechanism of action. RSC Advances. 2020, 10 (41), 24483–24490.
- Alsafi, M. A.; Hughes, D. L.; Said, M. A. First COVID-19 molecular docking with a chalconebased compound: synthesis, single-crystal structure and Hirshfeld surface analysis study. Acta Crystallogr. Sect. C: Structural Chemistry. 2020, 76 (12), 1043–1050.
- Duran, N.; Polat, M. F.; Aktas, D. A.; Alagoz, M. A.; Ay, E.; Cimen, F.; Tek, E.; Anil, B.; Burmaoglu, S.; Algul, O. New chalcone derivatives as effective against SARS-CoV-2 agent. Int. J. Clin. Pract. 2021, e14846.
- 26. Kalirajan, R. Activity of some novel chalcone substituted 9- anilinoacridines against coronavirus (COVID-19): a computational approach. Coronaviruses. 2020, 1, 13–22.
- Escrivani, D. O.; Charlton, R. L.; Caruso, M. B.; Burle-Caldas, G. A.; Borsodi, M. P. G.; Zingali, R. B.; Arruda-Costa, N.; PalmeiraMello, M. V.; de Jesus, J. B.; Souza, A. M.; et al. Chalcones identify ACS Omega
- Welday Kahssay, S.; Hailu, G. S.; Taye Desta, K. Design, Synthesis, Characterization and in vivo Antidiabetic Activity Evaluation of Some Chalcone Derivatives. Drug Design, Development and Therapy. 2021, 15, 3119.
- 29. Jain, A.; Jain, D. Synthesis, characterization and biological evaluation of some new heterocyclic derivatives of chalcone as antihyperglycemic agents. Int. J. Pharmaceutical Sci. Res. 2019, 59, 5700–5706.
- Bhoj, P.; Togre, N.; Bahekar, S.; Goswami, K.; Chandak, H.; Patil, M. Immunomodulatory Activity of Sulfonamide Chalcone Compounds in Mice Infected with Filarial Parasite, Brugia malayi. Indian Journal of Clinical Biochemistry 2019, 34 (2), 225–229.

- 31. Lee, J. S.; Bukhari, S. N. A.; Fauzi, N. M. Effects of chalcone derivatives on players of the immune system. Drug design, development and therapy 2015, 9, 4761.
- Reddy, M. R.; Aidhen, I. S.; Reddy, U. A.; Reddy, G. B.; Ingle, K.; Mukhopadhyay, S. Synthesis of 4-C-β-D-Glucosylated Isoliquiritigenin and Analogues for Aldose Reductase Inhibition Studies. Eur. J. Org. Chem. 2019, 2019 (24), 3937–3948.
- 33. Shah, U.; Patel, S.; Patel, M.; Gandhi, K.; Patel, A. Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction. Indian J. Chem. 2020, B59, 283–293.
- 34. Aljohani, G.; Al-Sheikh Ali, A.; Alraqa, S. Y.; Itri Amran, S.; Basar, N. Synthesis, molecular docking and biochemical analysis of aminoalkylated naphthalene-based chalcones as acetylcholinesterase inhibitors. Journal of Taibah University for Science. 2021, 15 (1), 781–797.
- Bui, T. H.; Nguyen, N. T.; Dang, P. H.; Nguyen, H. X.; Nguyen, M. T. T. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors. SpringerPlus. 2016, 5 (1), 1789.
- 36. (36) Arora, V.; Arora, P.; Lamba, H. Synthesis and biological activities of some 3,5-disubstituted pyrazoline derivatives of 2-acetyl naphthalene. International J. Pharm. and Pharmaceut. Sci. 2012, 4, 303–306.
- 37. SG, P.; Patil, N.; Patil, S. M.; Bhusange, A.; Ravindranath, S. Synthesis, Characterization, Antimicrobial studies and Evaluation of Stability constants of Cu (II), Ni (II) and Co (II) complexes with the ligands derived from chalcone derivatives. Appl. Organomet. Chem. 2022, 36 (2), e6465.
- 38. Suwito, H.; Jumina; Mustofa; Pudjiastuti, P.; Fanani, M.; Kimata-Ariga, Y.; Katahira, R.; Kawakami, T.; Fujiwara, T.; Hase, T.; et al. Design and synthesis of chalcone derivatives as inhibitors of the ferredoxin◆Ferredoxin-NADP+ reductase interaction of plasmodium falciparum: Pursuing new antimalarial agents. Molecules. 2014, 19 (12), 21473−21488.
- 39. Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical synthesis of chalcone derivatives and their biological activities. Molecules. 2017, 22 (11), 1872.
- 40. Fathimunnisa, M.; Manikandan, H.; Sivakumar, D. An efficient, solvent free synthesis of some chalcone derivatives and their biological evaluation. Asian J. Chem. 2018, 30 (4), 807–810.
- 41. Anwar, C.; Prasetyo, Y. D.; Matsjeh, S.; Haryadi, W.; Sholikhah, E. N.; Nendrowati, N. Synthesis of chalcone derivatives and their in vitro anticancer test against breast (T47D) and colon (WiDr) cancer cell line. Indonesian Journal of Chemistry. 2018, 18 (1), 102–107.

- 42. Sultan, A.; Raza, A. R.; Abbas, M.; Khan, K. M.; Tahir, M. N.; Saari, N. Evaluation of silica-H2SO4 as an efficient heterogeneous catalyst for the synthesis of chalcones. Molecules. 2013, 18 (8), 10081–10094.
- 43. Narender, T.; Papi Reddy, K. A simple and highly efficient method for the synthesis of chalcones by using borontrifluorideetherate. Tetrahedron letters. 2007, 48 (18), 3177–3180.
- 44. Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharmaceutica Sinica B 2019, 9 (2), 335–350.
- 45. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. European journal of medicinal chemistry 2015, 101, 496–524.
- 46. Nasir Abbas Bukhari, S.; Jasamai, M.; Jantan, I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini reviews in medicinal chemistry. 2012, 12 (13), 1394–1403.
- 47. Wang, H. Comprehensive Organic Name Reactions; Wiley, 2010.
- 48. Wu, X.-F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.; Beller, M. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides. J. Am. Chem. Soc. 2010, 132 (41), 14596–14602.
- 49. Xu, L. W.; Li, L.; Xia, C. G.; Zhao, P. Q. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helvetica chimica acta 2004, 87 (12), 3080–3084.
- 50. Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A convenient synthesis of ethynylarenes and diethynylarenes. Chemischer Informationsdienst. 1980, 1980 (8), 627–630.
- 51. Braun, R. U.; Ansorge, M.; Müller, T. J. Coupling—isomerization synthesis of chalcones. Chem. Eur. J. 2006, 12 (35), 9081–9094.
- 52. Hsieh, C.-T.; Otvos, S. B.; Wu, Y.-C.; Mandity, I. M.; Chang, F.-R.; Fulop, F. Highly Selective Continuous-Flow Synthesis of Potentially Bioactive Deuterated Chalcone Derivatives. ChemPlusChem. 2015, 80 (5), 859–864.
- 53. Ö tvös, S. B.; Hsieh, C.-T.; Wu, Y.-C.; Li, J.-H.; Chang, F.-R.; Fülöp, F. Continuous-flow synthesis of deuterium-labeled antidiabetic chalcones: Studies towards the selective deuteration of the alkynone core. Molecules. 2016, 21 (3), 318.
- 54. Viana, G.S.B.; Bandeira, M.A.M.; Matos, F.J.A. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. Phytomedicine 2003, 10, 189–195. [CrossRef] [PubMed]
- Rojas, J.; Payá, M.; Domínguez, J.N.; Ferrándiz, M.L. ttCH, a selective inhibitor of inducible nitric oxide synthase expression with antiarthritic

- properties. Eur. J. Pharmcol. 2003, 465, 183–189. [CrossRef]
- 56. Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125–137. [CrossRef] [PubMed]
- 57. Al Rahim, M.; Nakajima, A.; Misawa, N.; Shindo, K.; Adachi, K.; Shizuri, Y.; Ohizumi, Y.; Yamakuni, T. A novel diol-derivative of chalcone produced by bioconversion, 3-(2,3-dihydroxyphenyl)- 1-phenylpropan-1-one, activates PKA/MEK/ERK signaling and antagonizes Aβ-inhibition of the cascade in cultured rat CNS neurons. Eur. J. Pharmacol. 2008, 600, 10–17. [CrossRef] [PubMed]
- Nielsen, S.F.; Larsen, M.; Boesen, T.; Schonning, K.; Kromann, H. Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. J. Med. Chem. 2005, 48, 2667–2677. [CrossRef] [PubMed]
- 59. Ali, M.A.; Shaharyar, M.; De Clercq, E. Synthesis of 5-(4-hydroxy-3-methylphenyl)-5-(substituted phenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone derivatives with anti-viral activity. J. Enzyme Inhib. Med. Chem. 2007, 22, 702–708. [CrossRef] [PubMed]
- Onyilagha, J.C.; Malhotra, B.; Elder, M.; French, C.J.; Towers, G.H.N. Comparative studies of inhibitory activities of chalcones on tomato ringspot virus (ToRSV). Can. J. Plant Pathol. 1997, 19, 133–137. [CrossRef] Molecules 2017, 22, 1872 10 of 11
- 61. Konieczny, M.T.; Konieczny, W.; Sabisz, M.; Skladanowski, A.; Wakiec, R.; Augustynowicz-Kopec, E.; Zwolska, Z. Synthesis of isomeric, oxathiolone fused chalcones, and comparison of their activity toward various microorganisms and human cancer cells line. Chem. Pharm. Bull. 2007, 55, 817–820. [CrossRef] [PubMed]
- 62. Gschwendt, M.; Kittstein, W.; Furstenberger, G.; Marks, F. The mouse ear edema: A quantitatively evaluable assay for tumor promoting compounds and for inhibitors of tumor promotion. Cancer Lett. 1984, 25, 177–185. [CrossRef]
- 63. Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Nagane, S.S.; Bandgar, B.P. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett. 2017, 27, 1502–1507. [CrossRef] [PubMed]
- 64. Sokmen, M.; Khan, M.A. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology 2016, 24, 81–86.
- 65. Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, R.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem. 2016, 24, 578–587. [CrossRef] [PubMed]

- 66. Miranda, C.L.; Stevens, J.F.; Ivanov, V.; McCall, M.; Frei, B.; Deinzer, M.L.; Buhler, D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food. Chem. 2000, 48, 3876–3884. [CrossRef] [PubMed]
- Nakamura, C.; Kawasaki, N.; Miyataka, H.; Jayachandran, E.; Kim, I.H.; Kirk, K.L.; Taguchi, T.; Takeuchi, Y.; Hori, H.; Satoh, T. Synthesis and biological activities of fluorinated chalcone derivatives. Bioorg. Med. Chem. 2002, 10, 699– 706. [CrossRef]
- 68. Park, P.H.; Kim, H.S.; Hur, J.; Jin, X.Y.; Jin, Y.L.; Sohn, D.H. YL-I-108, a synthetic chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 murine macrophages: Involvement of heme oxygenase-1 induction and blockade of activator protein-1. Arch. Pharm. Res. 2009, 32, 79–89. [CrossRef] [PubMed]
- Ansari, F.L.; Umbreen, S.; Hussain, L.; Makhmoor, T.; Nawaz, S.A.; Lodhi, M.A.; Khan, S.N.; Shaheen, F.; Choudhary, M.I.; Atta-ur-Rahman. Syntheses and biological activities of chalcone and 1,5-benzothiazepine derivatives: Promising new free-radical scavengers, and esterase, urease, and α-glucosidase inhibitors. Chem. Biodivers. 2005, 2, 487–496. [CrossRef] [PubMed]
- Burnham, W.S.; Sidwell, R.W.; Tolman, R.L.;
 Stout, M.G. Synthesis and antiviral activity of 4 0 hydroxy-5,6,7,8-tetramethoxyflavone. J. Med. Chem. 1972, 15, 1075–1076. [CrossRef] [PubMed]
- Ayman, M.; El-Messery, S. M.; Habib, E. E.; Al-Rashood, S. T.; Almehizia, A. A.; Alkahtani, H. M.; Hassan, G. S. Targeting microbial resistance: Synthesis, antibacterial evaluation, DNA binding and modeling study of new chalcone-based dithiocarbamate derivatives. Bioorganic Chemistry. 2019, 85, 282–292.
- Abdelgawad, M. A.; Bakr, R. B.; Alkhoja, O. A.; Mohamed, W. R. Design, synthesis and antitumor activity of novel pyrazolo [3, 4-d] pyrimidine derivatives as EGFR-TK inhibitors. Bioorganic Chemistry. 2016, 66, 88–96.
- Abdellatif, K. R.; Abdelall, E. K.; Abdelgawad, M. A.; Ahmed, R. R.; Bakr, R. B. Synthesis and anticancer activity of some new pyrazolo [3, 4-d] pyrimidin-4-one derivatives. Molecules. 2014, 19 (3), 3297–3309.
- 74. Abdelall, E.; BBakr, R.; Abdel-Hamid, M.; Kandeel, M. Enhancement to synthesize, design and dock of novel EGFR inhibitors containing pyrazolo [3, 4-d] pyrimidine cores of expected anticancer activity. OCAIJ. 2014, 10, 470–483.
- 75. Madhavi, S.; Sreenivasulu, R.; Yazala, J. P.; Raju, R. R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharmaceutical Journal 2017, 25 (2), 275–279.
- 76. Han, X.; Peng, B.; Xiao, B.-B.; Cao, S.-L.; Yang, C.-R.; Wang, W.-Z.; Wang, F.-C.; Li, H.-Y.; Yuan,

- X.-L.; Shi, R.; et al. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur. J. Med. Chem. 2019, 162, 586–601.
- 77. Desai, V.; Desai, S.; Gaonkar, S. N.; Palyekar, U.; Joshi, S. D.; Dixit, S. K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett. 2017, 27 (10), 2174–2180.
- 78. Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S. M.; Vélez, I. D.; Upegui, Y.; Muñoz, J. A.; et al. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo [3, 4-b][1, 4] diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur. J. Med. Chem. 2015, 93, 401–413.
- Shankaraiah, N.; Siraj, K.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K. R.; Sathish, M.; Vishnuvardhan, M.; Ramakrishna, S.; Jadala, C.; et al. DNA-binding affinity and anticancer activity of βcarboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorganic chemistry. 2015, 59, 130–139.
- Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorganic & medicinal chemistry letters 2018, 28 (8), 1278–1282.
- 81. Gan, X.; Wang, Y.; Hu, D.; Song, B. Design, synthesis, and antiviral activity of novel chalcone derivatives containing a purine moiety. Chin. J. Chem. 2017, 35 (5), 665–672.
- 82. Wang, Y.-J.; Zhou, D.-G.; He, F.-C.; Chen, J.-X.; Chen, Y.-Z.; Gan, X.-H.; Hu, D.-Y.; Song, B.-A. Synthesis and antiviral bioactivity of novel chalcone derivatives containing purine moiety. Chin. Chem. Lett. 2018, 29 (1), 127–130.
- 83. Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorganic & medicinal chemistry letters. 2018, 28 (11), 2091–2097.
- 84. Park, S.; Kim, E. H.; Kim, J.; Kim, S. H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem. 2018, 144, 435–443.
- 85. Kuthyala, S.; Nagaraja, G. K.; Sheik, S.; Hanumanthappa, M.; Kumar S, M. Synthesis of imidazo [1, 2-a] pyridine-chalcones as potent inhibitors against A549 cell line and their crystal studies. J. Mol. Struct. 2019, 1177, 381–390.
- 86. Zheng, C. J.; Jiang, S. M.; Chen, Z. H.; Ye, B. J.; Piao, H. R. Synthesis and Anti-Bacterial Activity of Some Heterocyclic Chalcone Derivatives

- Bearing Thiofuran, Furan, and Quinoline Moieties. Archiv der Pharmazie. 2011, 344 (10), 689–695.
- 87. Xuan, T. D.; Teschke, R. Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: Its Isolation, Synthesis, and Characterization. Molecules. 2015, 20 (9), 16306–16319.
- 88. Sashidhara, K. V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorganic & medicinal chemistry letters. 2010, 20 (24), 7205–7211.
- 89. Xi, G.-L.; Liu, Z.-Q. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron. 2014, 70 (44), 8397–8404.
- Vazquez-Rodriguez, S.; Lama Lopez, R.; Matos, M. J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Munoz Crego, A.; Santos, Y. Design, synthesis and antibacterial study of new potent and selective coumarin-chalcone derivatives for the treatment of tenacibaculosis. Bioorganic & medicinal chemistry 2015, 23 (21), 7045-7052.
- Niu, H.; Wang, W.; Li, J.; Lei, Y.; Zhao, Y.; Yang, W.; Zhao, C.; Lin, B.; Song, S.; Wang, S. A novel structural class of coumarinchalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem. 2017, 138, 212–220.
- Foroumadi, A.; Emami, S.; Sorkhi, M.; Nakhjiri, M.; Nazarian, Z.; Heydari, S.; Ardestani, S. K.; Poorrajab, F.; Shafiee, A. ChromeneBased Synthetic Chalcones as Potent Antileishmanial Agents: Synthesis and Biological Activity. Chemical biology & drug design. 2010, 75 (6), 590–596.
- 93. Mathew, B.; Suresh, J.; Mathew, G. E.; Haridas, A.; Suresh, G.; Sabreena, P. Synthesis, ADME studies, toxicity estimation, and exploration of molecular recognition of thiophene based chalcones towards monoamine oxidase-A and B. Beni-Suef University Journal of Basic and Applied Sciences. 2016, 5 (4), 396–401.
- 94. Venkataramireddy, V.; Shankaraiah, V.; Rao, A. T.; Kalyani, C.; Narasu, M. L.; Varala, R.; Jayashree, A. Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/ heteroaryl chalcone derivatives. Rasayan Journal of Chemistry 2016, 9 (1), 31–39.
- 95. Fogaça, T. B.; Martins, R. M.; Begnini, K. R.; Carapina, C.; Ritter, M.; de Pereira, C. M.; Seixas, F. K.; Collares, T. Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells. Pharmacological Reports. 2017, 69 (1), 156–161.Gogol, M., et al. "The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism." Physical Chemistry Chemical Physics, vol. 17, no. 30, pp. 1997119980, 2015.

- 96. Kausar, R.; Akhtar, N. Synthesis and biological activity of novel 2, 5-dichloro-3-acetylthiophene chalcone derivatives. Ind. J. Pharm. Educ. Res. 2017, 51, 679–683.
- 97. Ming, L. S.; Jamalis, J.; Al-Maqtari, H. M.; Rosli, M. M.; Sankaranarayanan, M.; Chander, S.; Fun, H.-K. Synthesis, characterization, antifungal activities and crystal structure of thiophene-based heterocyclic chalcones. Chemical Data Collections. 2017, 9, 104–113.
- 98. Ritter, M.; Martins, R. M.; Rosa, S. A.; Malavolta, J. L.; Lund, R. G.; Flores, A. F.; Pereira, C. M. Green synthesis of chalcones and microbiological evaluation. Journal of the Brazilian Chemical Society 2015, 26, 1201–1210.
- 99. Aganagowda, G.; Thamyongkit, P.; Petsom, A. Synthesis and antimicrobial activities of benzothiophene derivatives. Journal of the Chilean Chemical Society. 2012, 57 (1), 1043–1047.
- 100. Abdelgawad, M. A.; Bakr, R. B.; Alkhoja, O. A.; Mohamed, W. R. Design, synthesis and antitumor activity of novel pyrazolo [3, 4-d] pyrimidine derivatives as EGFR-TK inhibitors. Bioorganic Chemistry. 2016, 66, 88–96.