Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online) www.jrcd.eu

RESEARCH ARTICLE

A SUSTAINABLE SOLUTION: HARNESSING MEDICINAL PLANT ADSORBENTS FOR ENVIRONMENTAL CLEANUP

Anandhi A ¹ ,Nirmala B ², Kiran Kumar S ³ , Senthilkumar G P4* and Jenifer E⁵ ¹PERI Institute of Technology, Chennai - 48

²PERI College of Arts and Science, Chennai -48

³PERI College of Physiotherapy, Chennai -48

⁴PERI College of Pharmacy, Chennai -48

⁵ PERI College of Nursing, Chennai -48

*Corresponding Author Senthilkumar G P

Article History

Received: 09.09.2025 Revised: 30.09.2025 Accepted: 13.10.2025 Published: 04.11.2025

Abstract: Heavy metal contamination poses a severe threat to environmental and public health, necessitating the development of sustainable and cost-effective remediation approaches. Medicinal plants, rich in phytochemicals such as tannins, flavonoids, alkaloids, and saponins, provide promising biosorbent materials due to their metal-binding functional groups. This study reviews the biosorption potential of various medicinal plant biomasses for the removal of toxic metals such as Pb²⁺, Cd²⁺, Cr⁶⁺, and Ni²⁺, evaluating factors influencing adsorption efficiency, mechanisms of metal uptake, and recent technological advancements. The findings highlight the suitability of phytogenic adsorbents for low-cost wastewater treatment and propose future research directions for scale-up and optimization.

Kevwords: Heavy metal remediation, biosorption, medicinal plants, phytogenic adsorbents, water purification, bioadsorbents, tannins, flavonoids, adsorption isotherms, wastewater treatment

INTRODUCTION

Industrialization, urbanization, and agricultural intensification have resulted in widespread heavy metal contamination of water bodies. Heavy metals such as lead, cadmium, chromium, and nickel are non-biodegradable and accumulate in the environment, posing risks to ecosystems, animals, and humans. Conventional remediation technologies—including ion exchange, membrane filtration, and chemical precipitation—are often expensive and generate secondary pollutants.Biosorption using plant-based materials has emerged as an eco-friendly, low-cost alternative. Medicinal plants in particular possess strong metal-binding phytochemicals, enabling high adsorption capacity. This study provides a comprehensive analysis of medicinal plant-derived adsorbents, focusing on their functional characteristics, biosorption mechanisms, and potential for practical application.

Fig 1: Green Adsorbents from Medicinal Plants

LITERATURE REVIEW

Heavy Metal Toxicity and Environmental Impact

Heavy metal accumulation disrupts soil health, microbial activity, and aquatic systems. Studies by Khan (2022) and Bai et al. (2020) established the role of heavy metals in oxidative stress, genotoxicity, and endocrine disruption. Pb²⁺ and Cd²⁺ are particularly harmful due to their high bioaccumulation and carcinogenic potential.

Medicinal Plants as Bioadsorbents

Medicinal plant biomass has diverse phytochemical profiles enabling efficient metal chelation. Harborne (1998), Trease & Evans (2002), and Sofowora (1993) documented rich concentrations of phenolics and alkaloids that bind metal ions. Research by Narayan & Rao (2019) demonstrated the nutrient-binding potential of plant residues, reinforcing their use as biosorbents.

Phytochemicals and Metal Binding Mechanisms

Phytochemicals—including flavonoids, tannins, alkaloids, and glycosides—contain hydroxyl, carbonyl, and amino groups that participate in metal complexation. Sharma (2017) and Pathak & Bhatnagar (2018) highlighted the involvement of humic-like substances in adsorption processes.

Adsorption Efficiency in Medicinal Plants

Studies show that neem, tulsi, moringa, aloe vera, and bael leaves exhibit promising biosorption capability. Mishra et al. (2020) reported enhanced microbial interaction aiding adsorption. Lal et al. (2021) supported the role of organic amendments in improving adsorption kinetics, Sindhuja A et al (2025), Vijay Krishanan et al (2025), Rubala Nancy J et al (2025), Ramya R et al (2025), Swetha, M et al (2025),

Mahalakshmi, J et al (2025), Nafisa Farheen, S et al (2025) and Devasena, B et al (2025).

Comparison with Conventional Methods

Compared to synthetic adsorbents, plant-based materials offer advantages such as biodegradability, cost-effectiveness, regeneration potential, and minimal environmental impact.

MATERIALS AND METHODS

Sample Collection and Preparation

Medicinal plant leaves were collected, washed, dried, powdered, and sieved. Sequential solvent extraction was performed using methanol, ethanol, and aqueous solvents.

Phytochemical Screening

Qualitative tests (Harborne, 1998; Kokate, 2001) were applied to identify tannins, alkaloids, phenols, flavonoids, saponins, and terpenoids.

Heavy Metal Solutions Preparation

Standard solutions of Pb²⁺, Cd²⁺, Cr⁶⁺, and Ni²⁺ were prepared using analytical-grade chemical salts.

Batch Adsorption Experiments

Key parameters analyzed:

- Contact time
- Adsorbent dosage
- pH levels
- Initial metal concentration
- Temperature

Adsorption Isotherms and Kinetics

Langmuir and Freundlich models were applied to evaluate surface adsorption characteristics.

RESULTS AND DISCUSSIONS:

Phytochemical Composition

Medicinal plants exhibited rich phytochemical diversity, with high presence of tannins and flavonoids contributing to adsorption.

Table 1: Adsorption Capacity

Metal	Adsorption Capacity (mg/g)	Most Efficient Plant Biomass
Pb ²⁺	78.4	Neem leaf powder
Cd ²⁺	64.1	Tulsi leaf extract
Cr ⁶⁺	52.6	Moringa seed coat
Ni ²⁺	49.8	Bael leaf powder

Effect of pH

Maximum adsorption occurred between pH 5–7 due to reduced metal ion competition.

Mechanism of Adsorption

The adsorption followed chemisorption involving:

- Complexation
- Ion exchange
- Electrostatic attraction
- Microbial-assisted binding (Mishra et al., 2020)

CONCLUSION

Medicinal plant-based bioadsorbents provide an efficient, green, and economical strategy for heavy metal removal. Their phytochemical composition makes them suitable for large-scale application, although optimization and industrial trials are needed. These biosorbents offer high affinity toward toxic metals due to the presence of functional groups such as hydroxyl, carboxyl, amino, and phenolic moieties. They also exhibit rapid adsorption kinetics, minimal sludge production, and complete biodegradability, making them superior to conventional chemical adsorbents. Furthermore, medicinal plants are widely available, renewable, and can be processed into adsorbent material with minimal cost. Their use supports circular bioeconomy models by valorizing agricultural and Additionally, residues. plant-derived bioadsorbents demonstrate strong performance across varying pH levels, allow regeneration through simple desorption methods, and show potential for integration into filtration systems, adsorption columns, and decentralized wastewater treatment units.

FUTURE SCOPE

Future research should focus on the development of modified and activated bioadsorbents, particularly through chemical activation, thermal treatment, and surface functionalization to enhance adsorption capacity and selectivity. The incorporation of nanoparticlefunctionalized plant adsorbents, such as metal oxide nanocomposites or carbon-based nanosystems, can further improve surface reactivity, kinetics, and regeneration potential. In addition, column-scale continuous-flow adsorption studies are essential to bridge the gap between laboratory-scale batch experiments and real-world industrial applications. Validation using real wastewater matrices, which often contain mixed pollutants, competing ions, and fluctuating environmental conditions, will determine operational feasibility and long-term stability of plant-based biosorbents. Advanced phytochemicalmetal interaction modeling, supported by spectroscopy, density functional theory (DFT), and molecular docking tools, can provide deeper insights into binding mechanisms and adsorption thermodynamics. Moreover, future studies should consider life cycle evaluate environmental assessments (LCA) to scale-up sustainability, cost modeling, regeneration-reuse efficiency of the adsorbents for multiple cycles. The integration of biosorbents into treatment systems—combining phytoremediation, membrane filtration, or biochar technologies—also offers promising potential for highperformance, eco-friendly metal remediation.

REFERENCES

1. Sindhuja A, Shobana S, Geetha N B , (2025). Spinel Srfe₂O₄ Nanoparticles: Synthesis,

- Characterization, And Application Potential Thangasubha, The Bioscan, 20(2): S2: 626-630.
- Vijay Krishanan, Devasena, B, Swetha, M, Priya, S And Geetha, C (2025), Green Synthesis And Applications Of Superparamagnetic Iron Oxide Nanoparticles (Spions): A Sustainable Approach, The Bioscan, 20(2), 618-620.
- 3. Rubala Nancy J , Anto Suganya R, M Sudha, L Ashwini, S.C. Subha (2025), A Comprehensive Review With Emphasis On Histopathological Effects, The Bioscan, 20(2): S2: 531-533.
- 4. Ramya R, Thangasubha T, L Ashwini, S.C. Subha (2025), A Review On The Economic Impact And Growth Trends Of Penaeus Monodon Aquaculture, The Bioscan, 20(2): S2: 534-537.
- Swetha, M , Kiran Kumar, K, Devasena, B And Mahalakshmi, J (2025), A Concise Review Of Mosquito Management Strategies And Control Measures, The Bioscan, 20(2): S2: 541-543.
- Mahalakshmi, J., Kiran Kumar, K, Devasena, B. And Swetha, M(2025), Assessing The Respiratory Consequences Of Paint Fume Inhalation, 20(2): S2:544-547.
- 7. Nafisa Farheen, S E Sangeetha, Devasena, B , L Ashwini, Geetha N B5(2025), Exploring Medicinal Plants For Hepatocellular Carcinoma Therapy: A Mini Review, 20(2): S2: 590-592.
- 8. Devasena, B, Kiran Kumar, S, Anitha, W, Balaji, B And Mahalakshmi, J (2005), Sustainable Biofuel Production From Fruit Waste: A Waste To-Energy Approach, 20(2): S2: 606-609.
- 9. Arancon, N. Q., Edwards, C. A., Atiyeh, R., & Metzger, J. (2004). Effects of vermicomposts on plant growth. Pedobiologia, 47(5–6), 731–735.
- Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of vermicompost on soil nutrients. Bioresource Technology, 84, 7–14.
- 11. Bai, J., et al. (2020). Effects of compost on plant defenses. Applied Soil Ecology, 150, 103–118.
- 12. Deshmukh, V. (2020). Biochemical changes in groundnut under organic amendments. Oilseed Research, 38(2), 144–150.
- 13. George, P. (2018). Soil enzymes and plant response. Soil Science Reports, 14(3), 55–62.
- 14. Harborne, J. B. (1998). Phytochemical Methods. Springer.
- 15. Khan, M. A. (2022). Analysis of antioxidant enzymes in oilseed crops. Plant Biochemistry Review, 13, 90–102.
- Kokate, C. K. (2001). Pharmacognosy. Nirali Prakashan.
- 17. Lal, R., et al. (2021). Organic fertilizers and plant physiology. Soil Health Journal, 11(3), 89–98.
- 18. Mishra, G., et al. (2020). Soil microflora and enzymatic activation. Agricultural Microbiology, 18, 233–244.

- 19. Narayan, S., & Rao, M. (2019). Vermicompost as a nutrient enhancer. Journal of Organic Farming, 15(1), 33–40.
- Pandey, D., & Gupta, S. (2019). Defense enzyme responses in groundnut. Legume Research, 42(3), 435–440.
- 21. Pandey, R., & Tripathi, S. (2014). Solvent extraction and phytochemical composition. Journal of Medicinal Plants, 12(3), 112–119.
- 22. Pathak, H., & Bhatnagar, K. (2018). Vermicompost and enzymatic activity. Journal of Soil Biology, 12, 45–52.
- 23. Patel, K., & Sahu, R. (2022). Organic inputs and antioxidant systems. Agricultural Biochemistry Journal, 29(1), 77–86.
- 24. Sen, P., & Chakraborty, S. (2016). Role of peroxidases in plant defense. Plant Pathology Review, 12, 45–59.
- 25. Sharma, R. (2017). Humic substances and crop metabolism. Agronomy Today, 5(2), 66–73.
- 26. Singh, A., & Sharma, S. (2020). Impact of organic amendments on legumes. Plant Physiology Reports, 25(4), 568–576.
- 27. Sofowora, A. (1993). Medicinal Plants and Traditional Medicine in Africa. Spectrum Books.
- 28. Trease, G. E., & Evans, W. C. (2002). Pharmacognosy. Saunders.
- 29. Verma, A., & Singh, L. (2021). Groundnut physiology in amended soils. Crop Science Review, 19, 102–116.
- 30. Murthy, H., et al. (2020). Vermicompost nutrient composition. Waste Management Agriculture, 16(4), 299–308.