Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online)

RESEARCH ARTICLE

To Compare the Effectiveness of Whole-Body Vibration and Aerobic Exercise Versus Aerobic Exercise Alone in Females with Polycystic Ovary Syndrome: A Comparative Study

Nandhini B1, Shyam Rani Y1*, Parthasarathy R1

Department of Physiotherapy, Meenakshi College of Physiotherapy, Meenakshi Academy of Higher Education and Research

*Corresponding Author Shyam Rani Y

Article History

Received: 15.03.2025 Revised: 04.04.2025 Accepted: 25.05.2025 Published: 06.06.2025

Abstract:

Background: Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders in reproductive age of women. Depending on the diagnostic criteria, the prevalence rate in India is estimated to be between 8.2% and 22.5%. PCOS is also associated with factors such as increase in body weight and lifestyle changes. Objectives: The objective of the study is the effectiveness of whole-body vibration and aerobic exercise in females with polycystic ovary syndrome (PCOS). The objective of the study is the effectiveness of aerobic exercise only in females with polycystic ovary syndrome (PCOS). Methodology: Study design: Experimental design. Study type: pre and post type. Study setting: Faculty of occupational therapy and Faculty of Humanities and Science - MAHER University. Sampling design: Randomized control trial. Sample size: 60 subjects. Results: On comparing the mean values of Group A and Group B on PCOS Questionnaire score, it shows significant increase in the post test mean values in both groups, but Group A (Whole body vibration + Aerobic exercise) which has higher mean value is effective than Group B (Aerobic exercise only). Conclusion: The present study concluded that 12 weeks whole body vibration and aerobic exercise program was effective in subjects with PCOS in improving physical health. Both the group have shown improvement in outcome measure but Group A (whole body vibration + aerobic exercise group) was superior to group B (Aerobic exercise only group).

Keywords: PCOS, Whole body vibration, aerobic exercise, polycystic ovarian syndrome.

INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the endocrine disorders among reproductive age. It is characterized by irregular menstruation, hyperandrogenism and polycystic ovaries. It leads to numerous health complications, including insulin resistance, obesity and cardiovascular issues, which necessitate effective management strategies. PCOS decreases the chance of conception and increases the risk of complications during pregnancy [1]. PCOS is a major public health concern and one of the most common hormonal abnormalities affecting women in their reproductive years. Up to 70% of cases go undiagnosed, with the condition affecting 8–13% of women who are of reproductive age [2]. Before menopause, one in ten women are thought to experience pcos and deal with its complications. The fundamental reasons of PCOS are recognized to be the high ratio of luteinizing hormone (LH) to follicle-stimulating hormone (FSH) and the increased frequency of gonadotropin-releasing hormone (GnRH); however, the precise pathophysiology and causes are not fully understood. This syndrome is frequently linked to enlarged and dysfunctional ovaries, high testosterone levels, insulin resistance and other conditions [3].

Globally, women between the ages of 17 and 45 are predicted to have a 5.5% to 12.6% prevalence of pcos. Depending on the diagnostic standards, India's prevalence rate is estimated to be between 8.2% and 22.5%. In women, one of the main cause of infertility is polycystic ovary syndrome. A young girl may be predisposed to pcos by being overweight or obese, leading a sedentary lifestyle, or

having a family history of the condition[4]. Signs and symptoms of PCOS have a substantial financial burden and is linked to infertility, hair loss, irregular menstruation and ovulation, and metabolic problems. While any age can experience pcos, starting at menarche, most cases are seen in people between the ages of 20 and 30 [5].

Insulin resistance, hormone imbalance, hyperandrogenism, and persistent low-grade inflammation are the main pathophysiological factors of polycystic ovarian syndrome (PCOS). These factors decrease folliculogenesis and raise the risk of associated comorbidities like type 2 diabetes and endometrial cancer. International guidelines state that ovarian morphology, anovulation, and hyperandrogenism are the three primary characteristics used to diagnose pcos. Sedentary lifestyle, high-calorie diets may be contributing factors to pcos aggravation. Diets high in sugar can cause chronic inflammation, change the gut flora and produce more testosterone, all of which can lead to pcos. The characteristic symptoms of this condition are exacerbated by obesity and weight increase [6].

In females who have a genetic susceptibility to developing pcos, obesity and gaining weight frequently causes biochemical and clinical symptoms. There is a connection between pcos and obesity. Between 38% and 88% of women with pcos are overweight or obese. The Northen Finland Birth Cohort (NFBC) 1996 data indicates a substantial relationship between body mass index and pcos characteristics across all age groups. In addition, small weight loss (about 5 percentage) frequently leads to clinically significant improvements in the

ne in journal Of rake Cardiovascular diseases

hyperandrogenism, metabolic, and reproductive aspects of PCOS[7]. Exercise is a cornerstone of pcos management, helping improve insulin sensitivity, hyperandrogenism and promote overall well-being. Traditional aerobic exercises have been widely recommended for their cardiovascular benefits and ability to aid in weight management. However, emerging evidence suggests that whole body vibration (WBV) exercise may offer unique benefits for women with pcos [8]. Potential processes that contribute to weight loss with whole body vibration therapy include decreased fat storage and suppression of adipogenesis, higher energy expenditure during exercise and enhanced muscle mass. In order to receive whole body vibration therapy, one must squat or stand on a vibrating plate that sends energy throughout the body and causes muscular contractions. This form of exercise is gaining attention for its potential to improve muscle strength, bone density and metabolic health with lower impact on the joints compared to conventional aerobic exercises [9]. It is characterized by ovulatory dysfunction, hyperandrogenism and polycystic ovaries. PCOS is a leading cause of infertility and a significant contributor to metabolic disturbances such as type 2 diabetes, obesity and insulin resistance Pathophysiology of PCOS is multifactorial, involving genetic, hormonal and environmental factors. Despite its prevalence and impact, the etiology of PCOS remains incompletely understood, necessitating ongoing research into effective management strategies [11].

Lifestyle modification, particularly exercise and diet, is a cornerstone in the management of PCOS. Regular physical activity has been shown to improve insulin sensitivity, reduce body weight and ameliorate cardiovascular risk factors, which are often exacerbated in women with PCOS [12]. Aerobic exercise, characterized by sustained activities that increase heart rate and improve cardiovascular fitness, is commonly recommended due to its well-documented benefits on metabolic health. However, the optimal type and intensity of exercise for managing PCOS symptoms remain subjects of investigation. Given the heterogeneous nature of PCOS and the varying responses to different forms of exercise, exploring alternative exercise modalities is crucial for developing personalized and effective treatment plans[13-14]. Whole body vibration exercise is relatively new intervention that has gained attention for its potential benefits in various health conditions. WBV involves standing, sitting or lying on a platform that oscillates at specific frequencies, transmitting mechanical vibrations through the body. These vibrations induce muscle contractions and stimulate mechanoreceptors, potentially leading to improvements in muscle strength, bone density and metabolic health with lower physical strain compared to traditional exercise [15-16]. Several studies have suggested that WBV may enhance physical performance, increase muscle mass and improve metabolic parameters such as insulin sensitivity and lipid profiles. Given these potential benefits, WBV exercise could be a promising intervention for women with PCOS, who often experience musculoskeletal and metabolic challenges [17-18]. The primary objectives of the current study is to analyse the effectiveness of whole-body vibration and aerobic exercises in females diagnosed with PCOS, and to analyse the effectiveness of aerobic exercise alone in females diagnosed with PCOS.

MATERIALS AND METHODS

Study design

This dissertation will employ a experimental study design to comparing the effectiveness of whole-body vibration and aerobic exercises versus aerobic exercises alone in women with PCOS. Participants will be randomly divided into2 groups: 1) Whole body vibration + Aerobic Exercise Group or 2) Aerobic Exercise Only Group. The intervention period will last 12 weeks, with assessments conducted at baseline, mid-intervention (1-6 weeks), and post-intervention (7-12 weeks). For this study, 60 subjects were chosen and divided as Group A (whole body vinration+Aerobic exercise group) - 30 Subjects, and Group B (Aerobic exercise group) - 30 Subjects under Pre and Post type studies for the period of 12 weeks.

Inclusion criteria

- o Female in the age between 18-25 years with
- Hyperandrogenism
- Anovulation
- Polycystic ovaries

Exclusion criteria

- Anemia
- Cardiovascular disease
- Lung disease
- History of chronic disease

Chronic medical conditions unrelated to PCOS

A total of 60 subjects with polycystic ovarian syndrome were randomly assigned into two groups. The purpose and importance of the study was elaborated and explained to the patients. Informed consent was obtained then they were assessed and grouped into two, Group A with 30 subjects and Group B with 30 subjects.

Group A -Whole-body vibration technique and Aerobic exercises

Group A (Whole-body vibration+Aerobic exercise) received whole body vibration combined with aerobic exercise (for example-cycling, jump rope, step Aerobic) for 3 times a week, 45 minutes per session for 12 weeks. The subjects will standing on whole body vibration with maintaining spine straight and squatting position while keeping their trunk extended. Advance position- one leg stance, lunges. The training session will be divided into three sets of one minute each, with 1 minute of standing break in between. Intensit-1mm, given for 20 minutes after this 5 minutes rest and then start aerobic exercise for 20 minutes.

Standing position:

Basic stance: Stand with feet shoulder-width apart on the platform (Fig 1). Knees slightly bent: Maintain a slight bend in your knees to absorb vibrations and protect your joints. Core engaged: Tighten your abdominal muscles to support your spine. Duration: Start with 1-2 minutes per session and gradually increase to 10-15 minutes.

Frequency: 2-3 times per week is recommended initially.

Fig 1. Standing on whole body vibration Fig 2. Squatting - whole body vibration

Exercise positions: Squatting position: standing with feet shoulder-width apart, lower your body into a squatting position, and hold or perform repetitions (Fig 2).

Advanced positions: One-leg stance: Stand on one leg to challenge your balance and core stability (Fig 3).

Fig 3. One leg stance on the whole body vibration. Fig 4. Lunges on the whole body vibration

Lunges: Place one foot on the platform and the other on the floor behind you, lowering into a lunge position (Fig 4).

Post-procedure

- 1. Cool down: Perform light stretching to help your muscles relax and reduce any potential soreness.
- 2. Hydration: Drink plenty of water to stay hydrated.
- 3. Monitoring: Pay attention to how your body feels. If you experience any discomfort or adverse effects, reduce the intensity or consult a professional.

Group B - Aerobic exercise only

Group B (Aerobic exercise only) received moderate-intensity aerobic exercises in form of treadmill walking with other aerobic exercises for three times a week, 45 minutes per session for 12 weeks. The subjects engaged to perform moderate intensity aerobic exercise for 45 minutes for three times per week for 12 weeks. 20 minutes of tread mill 5 minutes rest and 20 minutes of aerobic exercise.

Walking on a treadmill

Warm-up: Start with a 5- minute warm-up, walking at a slower pace to prepare your muscles. Pace: Increase your pace to a brisk walk, aiming for a moderate intensity where you can talk but not sing. Duration: Aim for at least 20 minutes of continuous walking. Cool-down: End with a 5-minute cool-down, gradually slowing your pace to bring your heart rate back to resting levels. Frequency: Aim for at least 150 minutes of moderate aerobic activity per week, spread over most days of the week (Fig 5).

Fig 5. Treadmill walking

Aerobics exercises for group A and group B Cycling

Warm-up: Cycle at a low resistance and a moderate pace for 5-10 minutes. Pace and resistance: Increase resistance and speed to reach a moderate intensity level. Aim for 60-80 revolutions per minute (RPM). Duration: Cycle for 10 minutes, depending on your fitness level. Cool-down: Gradually decrease resistance and pace for the last 5-10 minutes. Frequency: three times per week (Fig 6).

Fig 6. Cycling

Step aerobics

Warm up: Start with a 5-minute warm-up of light stepping or marching in place.

Step routine:

Basic step: Step up onto the platform with one foot, then the other, and step down in reverse order (Fig 7).

Fig 7. step aerobics - basic step

V-step: Step up wide with both feet, then step down close together (Fig 8).

Fig 8. Step aerobics - v step

- Pace: Maintain a steady rhythm, using arms for balance and additional movement.
- Duration: Continue the routine for 10 minutes.
- Cool-Down: End with a 5 minute cool-down of light stepping and stretching.
- Frequency: 3times per week.
- Jump rope
- Warm-Up: Start with a few minutes of light jumping or jogging in place.
- Form: Hold the handles of the jump rope at hip height, keeping your elbows close to your body. Jump on the balls of your feet with a slight bend in your knees.
- Pace: Jump at a steady pace. Begin with basic jumps and progress to more advanced techniques as you improve.
- Duration: Start with short intervals (e.g., 1-2 minutes), gradually increasing to 10 minutes.
- Cool-down: Slow your pace and finish with light jumping or jogging in place for a few minutes.
- Frequency: Three times per week (Fig 9).

Fig 9. Jump rope

Warm up& Cool down exercise was included to avoid injuries. Post test score was recorded after 12 weeks of intervention.

n_	L	١.	1	
9	nı	14		1

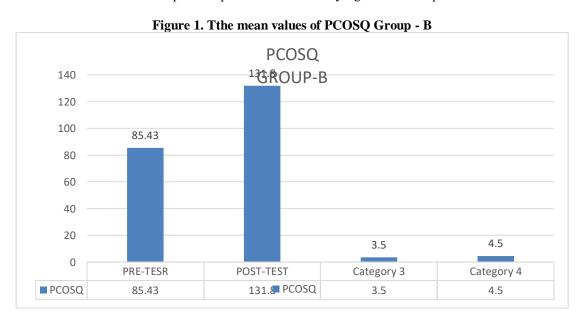
Table 1:					
S.No.	Group	Weeks	Treatment	Duration	Frequency
1.	Group A	1st - 4th	Whole body vibration - Standing	20 min	
	_		position	Rest 1 min for every	
			-	3 minutes.	
			Aerobic exercise - cycling, step aerobic	20 min	
			jump rope.		
		5th - 8th	Whole body vibration - squatting	20 min	
			position	Rest 1 min for every 3 sets.	
			Aerobic exercise - cycling, step aerobic		
			jump rope.		
		9th - 12th	Whole body vibration - Lunges	20 min	
			-	Res 1 min for every 3sets	3 Days per weel
			Aerobic exercise - cycling, step aerobic	20 min	• •
			jump rope.		
2.	Group B	1st - 4th	Treadmill walking	20 min	
	-		Aerobic exercise same as group A	20 min	
		5th - 8th	Treadmill walking	25 min	
			Aerobic exercise same as group A	20 min	
		9th - 12th	Treadmill walking	25 min	
			Aerobic exercise same as group B	20 min	3 Days per weel

Statistical analysis

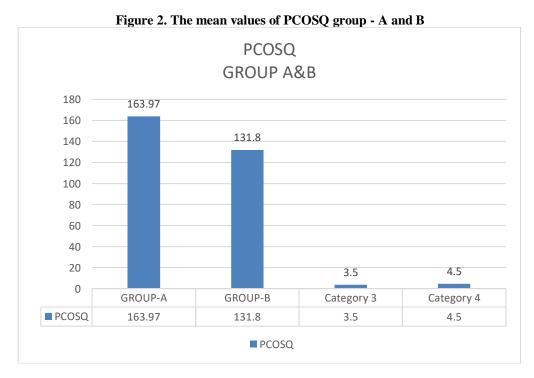
Data was analyzed using SPSS statistical software version 27 and student paired t test was adapted to comparing preintervention and post-intervention outcomes within and independent T test between groups. Graphs and data table was adopted by same statistical software. Statistical significance will be set at p < 0.05.

RESULT

On compare the pre-test mean values and post-test mean values between group A and group B, Group A - 30 subjects who undergone both Whole body vibration and aerobic exercise showed statistical significance (0.001) in reducing PCOS and it's symptoms also improve their quality of life. When Group A and Group B's PCOSQ mean values are compared, it is evident that both groups post-test mean values have significantly increased, but (Group A – Whole body vibration+ aerobic exercises) shows 163.97 ± 2.426 which has the higher mean value and more effective than (Group B – Aerobic exercises) 131.80 ± 25.668 at $P \le 0.05$. Hence the null hypothesis is rejected.


Table 2. Mean values of PCOSO group - A

	1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	PCOSQ		
Group - A	Pre-test	Post-test	
Mean	85.93	163.67	



SD	9.032	2.426	
P value	0.0001		
t-test	0.22		
Significance	0.0001		

Table 2. shows mean values of PCOSQ group-A, the experimental groups mean \pm SD of pre-test is 85.93 \pm 9.03 post-treatment is 163.67 \pm 2.43. The difference between pre- and post-test is statistically significant with p =0.0001.

According to the given bar-graph of Group -B PCOSQ -the control groups mean of pre-test is 85.43, increases post-test values is 131.80.

According to the given bar-graph of PCOSQ of the control group values is 131.8 increases eexperimental group values is 163.97

DISCUSSION

The main objective of this study is to reduce the symptoms and improve the quality of life among PCOS subjects, totally 60 subjects were enrolled on based on selection criteria consent was obtained assessed and separated into two groups, each group with 30 subjects. Group A was treated with Whole-body vibration and Aerobic exercises, Group B was treated with Aerobics exercises alone for 12 weeks. The purpose of this dissertation was to find whether there are any effects of whole body vibration and aerobic exercise versus aerobic exercise alone in females with polycystic ovarian syndrome among college students -PCOS individuals of age group 18-25. After 12 weeks of training for both groups, it was observed that there was a statistically significant improvement in the outcome measures of polycystic ovarian syndrome questionnaire and within the group. However, statistically significant improvement was seen in group A which performed whole body vibration and aerobic exercise. Then both groups are significant but GROUP-A which has the higher mean value and more effective than GROUP-B. When between group (A and B) analysis was done. Whole body vibration and aerobic exercises is most significantly improved than aerobic exercise alone. Whole body vibration and aerobic exercises showed more benefits in several key areas.

Body composition: Group A: there was a more significant reduction in body mass index and improvement in muscle mass in the group that combined with whole body vibration and aerobic exercise. Group B: while improvement were noted, but improvement is less than Group A,

Menstrual regularity: Group A: There was a notable improvement in menstrual regularity among participants, indicating better reproductive health. The enhanced hormonal balance likely played a role in this outcome. Group B: Improvement were noted but were comparatively moderate.

Physical fitness and quality of Life: Combining WBV with aerobic training exercises result in greater development in physical health, including muscle endurance and strength. This combination may also result in better overall well-being and quality of life due to the combined effects of improved metabolic health and physical fitness.

Mechanism of action:

- 1. Enhance muscle Activation: whole body vibration can lead to greater muscle activation, which might increase energy expenditure and improve muscle conditioning.
- 2. Hormonal modulation: whole body vibration and aerobic exercise may positively influence hormonal regulation, contributing to better management of PCOS symptoms.

 3. Improved circulation: whole body vibration and aerobic exercise might improve blood flow and lymphatic drainage, which could aid in reducing inflammation and improving metabolic function. These study findings suggest that whole body vibration and aerobic exercise regimens could

offer enhanced benefits for females with PCOS. According to Dokras et al. (2011), the findings showed a higher prevalence of depression and anxiety among women with and that exercise significantly improved psychological well-being, supporting its inclusion in comprehensive treatment plans for PCOS [37]. Also, Orio et al., (2006) reported that that Aerobic exercise was found to reduce hyperandrogenism and improve menstrual regularity in women with PCOS, underscoring the endocrine benefits of physical activity [38]. In the study of, Baillot et al. (2014) found that WBV exercise was found to reduce visceral fat and improve insulin sensitivity in obese individuals, indicating that similar benefits could be expected in women with PCOS[40]. The study's results demonstrate the effect of whole body vibration and aerobic exercise in females with PCOS both practically and statistically. Our study only included limited samples; however, with more advanced approaches future research can include a large sample.

CONCLUSION

The present study reported that the advance understanding of exercise interventions in PCOS by comparing the effectiveness of Whole-body vibration and aerobic exercises versus aerobic exercises alone. The study's findings could have significant implications for optimizing the management of PCOS, improving metabolic, hormonal, and psychological outcomes for affected women. As the prevalence of PCOS continues to rise, innovative and evidence-based approaches to lifestyle modification are crucial for enhancing the quality of life and health outcomes for this population. Whole body vibration along with Aerobic exercises Group A has reduced PCOS significantly than the Group B who was treated with Aerobics exercises alone.

REFERENCES

- Várbíró S, Takács I, Tűű L, Nas K, Sziva RE, Hetthéssy JR, Török M. Effects of Vitamin D on Fertility, Pregnancy and Polycystic Ovary Syndrome-A Review. Nutrients.
- Polycystic ovary syndrome world health organization. 2023. Polycystic ovary syndrome (who.int)
- 3. Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. International journal of molecular sciences. 2022 Jan 6;23(2):583.
- 4. Bharali MD, Rajendran R, Goswami J, Singal K, Rajendran V. Prevalence of polycystic ovarian syndrome in India: a systematic review and meta-analysis. Cureus. 2022 Dec 9;14(12).
- 5. Bremer AA. Polycystic ovary syndrome in the pediatric population. Metabolic syndrome and related disorders. 2010 Oct 1;8(5):375-94.
- 6. Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic ovary syndrome:

DOURNAL
OF RARE
CARDIOVASCULAR DISEASES

- etiology, current management, and future therapeutics. Journal of Clinical Medicine. 2023 Feb 11;12(4):1454.
- Barber TM, Hanson P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clinical Medicine Insights: Reproductive Health. 2019 Sep;13:1179558119874042.
- 8. Gloeckl R, Heinzelmann I, Baeuerle S, Damm E, Schwedhelm AL, Diril M, Buhrow D, Jerrentrup A, Kenn K. Effects of whole body vibration in patients with chronic obstructive pulmonary disease—a randomized controlled trial. Respiratory medicine. 2012 Jan 1;106(1):75-83.
- 9. Cristi-Montero C, Cuevas MJ, Collado PS. Whole-body vibration training as complement to programs aimed at weight loss. Nutricion hospitalaria. 2013;28(5):1365-71.
- 10. Kogure GS, Lopes IP, Ribeiro VB, Mendes MC, Kodato S, Furtado CL, de Sá MF, Ferriani RA, da Silva Lara LA, Dos Reis RM. The effects of aerobic physical exercises on body image among women with polycystic ovary syndrome. Journal of affective disorders. 2020 Feb 1;262:350-8.
- 11. Witchel SF, Oberfield SE, Peña AS. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. Journal of the Endocrine Society. 2019 Aug;3(8):1545-73.
- 12. Cowan S, Lim S, Alycia C, Pirotta S, Thomson R, Gibson-Helm M, Blackmore R, Naderpoor N, Bennett C, Ee C, Rao V. Lifestyle management in polycystic ovary syndrome—beyond diet and physical activity. BMC endocrine disorders. 2023 Jan 16;23(1):14.
- Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Frontiers in cardiovascular medicine. 2018 Sep 28;5:408204.
- 14. Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. The application of clinical genetics. 2019 Dec 24:249-60.
- 15. Omidvar M, Alavinia SM, Craven BC. The effects of whole body vibration therapy on reducing fat mass in the adult general population: A systematic review and meta-analyses. Journal of musculoskeletal & neuronal interactions. 2019;19(4):455.
- 16. Dolny DG, Reyes GF. Whole body vibration exercise: training and benefits. Current sports medicine reports. 2008 May 1;7(3):152-7.
- 17. Tapp LR, Signorile JF. Efficacy of WBV as a modality for inducing changes in body composition, aerobic fitness, and muscular strength: a pilot study. Clinical interventions in aging. 2014 Dec 23:63-72.
- Lin CI, Huang WC, Chen WC, Kan NW, Wei L, Chiu YS, Huang CC. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice. Metabolism. 2015 Sep 1;64(9):1146-56.
- 19. Balen AH, Laven JS, Tan SL, Dewailly D. Ultrasound assessment of the polycystic ovary: international consensus definitions. Human reproduction update. 2003 Nov 1;9(6):505-14.

- Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. The Journal of steroid biochemistry and molecular biology. 2010 Oct 1;122(1-3):42-52.
- 21. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human reproduction. 2010 Feb 1;25(2):544-51.
- Ganie MA, Vasudevan V, Wani IA, Baba MS, Arif T, Rashid A. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian Journal of Medical Research. 2019 Oct 1;150(4):333-44.
- 23. Barry JA, Kuczmierczyk AR, Hardiman PJ. Anxiety and depression in polycystic ovary syndrome: a systematic review and meta-analysis. Human reproduction. 2011 Sep 1;26(9):2442-51.
- 24. Giallauria F, Palomba S, Maresca L, Vuolo L, Tafuri D, Lombardi G, Colao A, Vigorito C, Francesco Orio. Exercise training improves autonomic function and inflammatory pattern in women with polycystic ovary syndrome (PCOS). Clinical endocrinology. 2008 Nov;69(5):792-8.
- 25. Witchel SF, Oberfield SE, Peña AS. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. Journal of the Endocrine Society. 2019 Aug;3(8):1545-73.
- 26. Vigorito C, Giallauria F, Palomba S, Cascella T, Manguso F, Lucci R, De Lorenzo A, Tafuri D, Lombardi G, Colao A, Orio F. Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism. 2007 Apr 1:92(4):1379-84.
- 27. Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, Lehnert H. Cardiometabolic aspects of the polycystic ovary syndrome. Endocrine reviews. 2012 Oct 1;33(5):812-41.
- 28. Stener-Victorin E, Holm G, Janson PO, Gustafson D, Waern M. Acupuncture and physical exercise for affective symptoms and health-related quality of life in polycystic ovary syndrome: secondary analysis from a randomized controlled trial. BMC complementary and alternative medicine. 2013 Dec;13:1-8.
- 29. Ritzmann R, Kramer A, Bernhardt S, Gollhofer A. Whole body vibration training-improving balance control and muscle endurance. PloS one. 2014 Feb 26;9(2):e89905.
- 30. Fjeldstad C, Palmer IJ, Bemben MG, Bemben DA. Whole-body vibration augments resistance training effects on body composition in postmenopausal women. Maturitas. 2009 May 20;63(1):79-83.Fjeldstad C, Palmer IJ, Bemben MG, Bemben DA. Whole-body vibration augments resistance training effects on body composition in postmenopausal women. Maturitas. 2009 May 20;63(1):79-83.

JOURNAL
OF RARE
CARDIOVASCULAR DISEASES

- 31. Thyfault JP, Bergouignan A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia. 2020 Aug;63(8):1464-74.
- 32. Park SY, Son WM, Kwon OS. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health. Journal of exercise rehabilitation. 2015 Dec;11(6):289.
- 33. Shehata MM, Maged AM, Kotb A, Ogila AI, Lasheen Y, Salah N, Mohsen RA, Fouad M, Abd-Elazeim AS. Whole-body vibration versus supervised aerobic exercise on hormonal parameters and inflammatory status in women with premenstrual syndrome: A randomized controlled trial. International Journal of Gynecology & Obstetrics. 2023 Aug;162(2):493-501.
- Shele G, Genkil J, Speelman D. A systematic review of the effects of exercise on hormones in women with polycystic ovary syndrome. Journal of Functional Morphology and Kinesiology. 2020 May 31;5(2):35.
- 35. Bonanni R, Cariati I, Romagnoli C, D'Arcangelo G, Annino G, Tancredi V. Whole body vibration: a valid alternative strategy to exercise?. Journal of functional morphology and kinesiology. 2022 Nov 3;7(4):99.
- 36. Sims EA, Danforth E. Expenditure and storage of energy in man. The Journal of clinical investigation. 1987 Apr 1;79(4):1019-25.
- 37. Cronin L, Guyatt G, Griffith L, Wong E, Azziz R, Futterweit W, Cook D, Dunaif A. Development of a health-related quality-of-life questionnaire (PCOSQ) for women with polycystic ovary syndrome (PCOS). The Journal of Clinical Endocrinology & Metabolism. 1998 Jun 1:83(6):1976-87.
- 38. Dokras A, Clifton S, Futterweit W, Wild R. Increased prevalence of anxiety symptoms in women with polycystic ovary syndrome: systematic review and meta-analysis. Fertility and sterility. 2012 Jan 1;97(1):225-30.
- 39. Orio Jr F, Palomba S, Spinelli L, Cascella T, Tauchmanovà L, Zullo F, Lombardi G, Colao A. The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. The Journal of Clinical Endocrinology & Metabolism. 2004 Aug 1;89(8):3696-701.
- Baillot A, Audet M, Baillargeon JP, Dionne IJ, Valiquette L, Rosa-Fortin MM, Abou Chakra CN, Comeau E, Langlois MF. Impact of physical activity and fitness in class II and III obese individuals: a systematic review. Obesity reviews. 2014 Sep;15(9):721-39.
- 41. Patten RK, Boyle RA, Moholdt T, Kiel I, Hopkins WG, Harrison CL, Stepto NK. Exercise interventions in polycystic ovary syndrome: a systematic review and meta-analysis. Frontiers in physiology. 2020 Jul 7:11:531158.
- 42. Palomba S, Orio Jr F, Falbo A, Manguso F, Russo T, Cascella T, Tolino A, Carmina E, Colao A, Zullo F. Prospective parallel randomized, double-blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first-line treatment for ovulation induction in nonobese

- anovulatory women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism. 2005 Jul 1;90(7):4068-74.
- 43. Hoeger K, Davidson K, Kochman L, Cherry T, Kopin L, Guzick DS. The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. The Journal of Clinical Endocrinology & Metabolism. 2008 Nov 1;93(11):4299-306.
- 44. Harrison CL, Lombard CB, Moran LJ, Teede HJ. Exercise therapy in polycystic ovary syndrome: a systematic review. Human reproduction update. 2011 Mar 1;17(2):171-83.
- 45. Teede HJ, Mlsso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, Norman RJ, Costello MF. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Medical Journal of Australia. 2011 Sep 20.
- 46. Johannsen DL, Ravussin E. Spontaneous physical activity: relationship between fidgeting and body weight control. Current Opinion in Endocrinology, Diabetes and Obesity. 2008 Oct 1;15(5):409-15.
- 47. Fritz MA, Speroff L, editors. Clinical gynecologic endocrinology and infertility. lippincott Williams & wilkins; 2011.
- 48. Palomba S, Giallauria F, Falbo A, Russo T, Oppedisano R, Tolino A, Colao A, Vigorito C, Zullo F, Orio F. Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24-week pilot study. Human reproduction. 2008 Mar 1;23(3):642-50.